ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzen2 Unicode version

Theorem frecfzen2 10501
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
frecfzen2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )

Proof of Theorem frecfzen2
StepHypRef Expression
1 eluzel2 9600 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 9604 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 1z 9346 . . . . 5  |-  1  e.  ZZ
4 zsubcl 9361 . . . . 5  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ )  ->  ( 1  -  M
)  e.  ZZ )
53, 1, 4sylancr 414 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1  -  M )  e.  ZZ )
6 fzen 10112 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  (
1  -  M )  e.  ZZ )  -> 
( M ... N
)  ~~  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) ) )
71, 2, 5, 6syl3anc 1249 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M ) ) ) )
81zcnd 9443 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  CC )
9 ax-1cn 7967 . . . . 5  |-  1  e.  CC
10 pncan3 8229 . . . . 5  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  ( 1  -  M ) )  =  1 )
118, 9, 10sylancl 413 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  +  ( 1  -  M ) )  =  1 )
12 zcn 9325 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
13 zcn 9325 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 addsubass 8231 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC  /\  M  e.  CC )  ->  (
( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M
) ) )
159, 14mp3an2 1336 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
1612, 13, 15syl2an 289 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
172, 1, 16syl2anc 411 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M ) ) )
1817eqcomd 2199 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  ( 1  -  M ) )  =  ( ( N  + 
1 )  -  M
) )
1911, 18oveq12d 5937 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) )  =  ( 1 ... (
( N  +  1 )  -  M ) ) )
207, 19breqtrd 4056 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
1 ... ( ( N  +  1 )  -  M ) ) )
21 peano2uz 9651 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
22 uznn0sub 9627 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
23 frecfzennn.1 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2423frecfzennn 10500 . . 3  |-  ( ( ( N  +  1 )  -  M )  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2521, 22, 243syl 17 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
26 entr 6840 . 2  |-  ( ( ( M ... N
)  ~~  ( 1 ... ( ( N  +  1 )  -  M ) )  /\  ( 1 ... (
( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2720, 25, 26syl2anc 411 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   class class class wbr 4030    |-> cmpt 4091   `'ccnv 4659   ` cfv 5255  (class class class)co 5919  freccfrec 6445    ~~ cen 6794   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    - cmin 8192   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  fzfig  10504
  Copyright terms: Public domain W3C validator