ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzen2 Unicode version

Theorem frecfzen2 10519
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
frecfzen2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )

Proof of Theorem frecfzen2
StepHypRef Expression
1 eluzel2 9606 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 9610 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 1z 9352 . . . . 5  |-  1  e.  ZZ
4 zsubcl 9367 . . . . 5  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ )  ->  ( 1  -  M
)  e.  ZZ )
53, 1, 4sylancr 414 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1  -  M )  e.  ZZ )
6 fzen 10118 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  (
1  -  M )  e.  ZZ )  -> 
( M ... N
)  ~~  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) ) )
71, 2, 5, 6syl3anc 1249 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M ) ) ) )
81zcnd 9449 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  CC )
9 ax-1cn 7972 . . . . 5  |-  1  e.  CC
10 pncan3 8234 . . . . 5  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  ( 1  -  M ) )  =  1 )
118, 9, 10sylancl 413 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  +  ( 1  -  M ) )  =  1 )
12 zcn 9331 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
13 zcn 9331 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 addsubass 8236 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC  /\  M  e.  CC )  ->  (
( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M
) ) )
159, 14mp3an2 1336 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
1612, 13, 15syl2an 289 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
172, 1, 16syl2anc 411 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M ) ) )
1817eqcomd 2202 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  ( 1  -  M ) )  =  ( ( N  + 
1 )  -  M
) )
1911, 18oveq12d 5940 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) )  =  ( 1 ... (
( N  +  1 )  -  M ) ) )
207, 19breqtrd 4059 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
1 ... ( ( N  +  1 )  -  M ) ) )
21 peano2uz 9657 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
22 uznn0sub 9633 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
23 frecfzennn.1 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
2423frecfzennn 10518 . . 3  |-  ( ( ( N  +  1 )  -  M )  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2521, 22, 243syl 17 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
26 entr 6843 . 2  |-  ( ( ( M ... N
)  ~~  ( 1 ... ( ( N  +  1 )  -  M ) )  /\  ( 1 ... (
( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2720, 25, 26syl2anc 411 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   class class class wbr 4033    |-> cmpt 4094   `'ccnv 4662   ` cfv 5258  (class class class)co 5922  freccfrec 6448    ~~ cen 6797   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    - cmin 8197   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  fzfig  10522
  Copyright terms: Public domain W3C validator