ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul01d Unicode version

Theorem mul01d 8495
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mul01d.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
mul01d  |-  ( ph  ->  ( A  x.  0 )  =  0 )

Proof of Theorem mul01d
StepHypRef Expression
1 mul01d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mul01 8491 . 2  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
31, 2syl 14 1  |-  ( ph  ->  ( A  x.  0 )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177  (class class class)co 5962   CCcc 7953   0cc0 7955    x. cmul 7960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-setind 4598  ax-resscn 8047  ax-1cn 8048  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-sub 8275
This theorem is referenced by:  mulap0r  8718  diveqap0  8785  div0ap  8805  mulle0r  9047  un0mulcl  9359  modqid  10526  addmodlteq  10575  expmul  10761  bcval5  10940  fsummulc2  11844  geolim  11907  fprodeq0  12013  0dvds  12207  gcdaddm  12390  bezoutlema  12405  bezoutlemb  12406  lcmgcd  12485  mulgcddvds  12501  cncongr2  12511  prmdiv  12642  pcaddlem  12747  qexpz  12760  mulgnn0ass  13579  dvcnp2cntop  15256  plymullem1  15305  dvply1  15322  sin0pilem1  15338  sin0pilem2  15339  sinmpi  15372  cosmpi  15373  sinppi  15374  cosppi  15375  lgsdilem  15589  lgsdir2  15595  lgsdirnn0  15609  lgsdinn0  15610  lgsquad3  15646  trilpolemclim  16147  trilpolemisumle  16149  trilpolemeq1  16151  nconstwlpolem0  16174
  Copyright terms: Public domain W3C validator