| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul01d | Unicode version | ||
| Description: Multiplication by |
| Ref | Expression |
|---|---|
| mul01d.1 |
|
| Ref | Expression |
|---|---|
| mul01d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 |
. 2
| |
| 2 | mul01 8491 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-setind 4598 ax-resscn 8047 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-sub 8275 |
| This theorem is referenced by: mulap0r 8718 diveqap0 8785 div0ap 8805 mulle0r 9047 un0mulcl 9359 modqid 10526 addmodlteq 10575 expmul 10761 bcval5 10940 fsummulc2 11844 geolim 11907 fprodeq0 12013 0dvds 12207 gcdaddm 12390 bezoutlema 12405 bezoutlemb 12406 lcmgcd 12485 mulgcddvds 12501 cncongr2 12511 prmdiv 12642 pcaddlem 12747 qexpz 12760 mulgnn0ass 13579 dvcnp2cntop 15256 plymullem1 15305 dvply1 15322 sin0pilem1 15338 sin0pilem2 15339 sinmpi 15372 cosmpi 15373 sinppi 15374 cosppi 15375 lgsdilem 15589 lgsdir2 15595 lgsdirnn0 15609 lgsdinn0 15610 lgsquad3 15646 trilpolemclim 16147 trilpolemisumle 16149 trilpolemeq1 16151 nconstwlpolem0 16174 |
| Copyright terms: Public domain | W3C validator |