ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul01d Unicode version

Theorem mul01d 8353
Description: Multiplication by  0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mul01d.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
mul01d  |-  ( ph  ->  ( A  x.  0 )  =  0 )

Proof of Theorem mul01d
StepHypRef Expression
1 mul01d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mul01 8349 . 2  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
31, 2syl 14 1  |-  ( ph  ->  ( A  x.  0 )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148  (class class class)co 5878   CCcc 7812   0cc0 7814    x. cmul 7819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7906  ax-1cn 7907  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-sub 8133
This theorem is referenced by:  mulap0r  8575  diveqap0  8642  div0ap  8662  mulle0r  8904  un0mulcl  9213  modqid  10352  addmodlteq  10401  expmul  10568  bcval5  10746  fsummulc2  11459  geolim  11522  fprodeq0  11628  0dvds  11821  gcdaddm  11988  bezoutlema  12003  bezoutlemb  12004  lcmgcd  12081  mulgcddvds  12097  cncongr2  12107  prmdiv  12238  pcaddlem  12341  qexpz  12353  mulgnn0ass  13025  dvcnp2cntop  14303  sin0pilem1  14342  sin0pilem2  14343  sinmpi  14376  cosmpi  14377  sinppi  14378  cosppi  14379  lgsdilem  14568  lgsdir2  14574  lgsdirnn0  14588  lgsdinn0  14589  trilpolemclim  14924  trilpolemisumle  14926  trilpolemeq1  14928  nconstwlpolem0  14951
  Copyright terms: Public domain W3C validator