| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul01d | Unicode version | ||
| Description: Multiplication by |
| Ref | Expression |
|---|---|
| mul01d.1 |
|
| Ref | Expression |
|---|---|
| mul01d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 |
. 2
| |
| 2 | mul01 8531 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 |
| This theorem is referenced by: mulap0r 8758 diveqap0 8825 div0ap 8845 mulle0r 9087 un0mulcl 9399 modqid 10566 addmodlteq 10615 expmul 10801 bcval5 10980 fsummulc2 11954 geolim 12017 fprodeq0 12123 0dvds 12317 gcdaddm 12500 bezoutlema 12515 bezoutlemb 12516 lcmgcd 12595 mulgcddvds 12611 cncongr2 12621 prmdiv 12752 pcaddlem 12857 qexpz 12870 mulgnn0ass 13690 dvcnp2cntop 15367 plymullem1 15416 dvply1 15433 sin0pilem1 15449 sin0pilem2 15450 sinmpi 15483 cosmpi 15484 sinppi 15485 cosppi 15486 lgsdilem 15700 lgsdir2 15706 lgsdirnn0 15720 lgsdinn0 15721 lgsquad3 15757 trilpolemclim 16363 trilpolemisumle 16365 trilpolemeq1 16367 nconstwlpolem0 16390 |
| Copyright terms: Public domain | W3C validator |