ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulext Unicode version

Theorem mulext 8571
Description: Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5884. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
Assertion
Ref Expression
mulext  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  D )  ->  ( A #  C  \/  B #  D ) ) )

Proof of Theorem mulext
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
2 simplr 528 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
31, 2mulcld 7978 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  x.  B
)  e.  CC )
4 simprl 529 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
5 simprr 531 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  D  e.  CC )
64, 5mulcld 7978 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  x.  D
)  e.  CC )
74, 2mulcld 7978 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  x.  B
)  e.  CC )
8 apcotr 8564 . . 3  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( C  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  ( ( A  x.  B ) #  ( C  x.  D )  ->  ( ( A  x.  B ) #  ( C  x.  B )  \/  ( C  x.  D ) #  ( C  x.  B ) ) ) )
93, 6, 7, 8syl3anc 1238 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  D )  ->  (
( A  x.  B
) #  ( C  x.  B )  \/  ( C  x.  D ) #  ( C  x.  B
) ) ) )
10 mulext1 8569 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) #  ( C  x.  B )  ->  A #  C ) )
111, 4, 2, 10syl3anc 1238 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  B )  ->  A #  C ) )
12 mulext2 8570 . . . . 5  |-  ( ( D  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  x.  D
) #  ( C  x.  B )  ->  D #  B ) )
135, 2, 4, 12syl3anc 1238 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  x.  D ) #  ( C  x.  B )  ->  D #  B ) )
14 apsym 8563 . . . . 5  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D #  B  <->  B #  D
) )
155, 2, 14syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( D #  B  <->  B #  D
) )
1613, 15sylibd 149 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  x.  D ) #  ( C  x.  B )  ->  B #  D ) )
1711, 16orim12d 786 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  B ) #  ( C  x.  B )  \/  ( C  x.  D ) #  ( C  x.  B ) )  -> 
( A #  C  \/  B #  D ) ) )
189, 17syld 45 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  D )  ->  ( A #  C  \/  B #  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   CCcc 7809    x. cmul 7816   # cap 8538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539
This theorem is referenced by:  mulap0r  8572  lt2msq  8843  apexp1  10698  absext  11072
  Copyright terms: Public domain W3C validator