ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulext Unicode version

Theorem mulext 8722
Description: Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5976. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
Assertion
Ref Expression
mulext  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  D )  ->  ( A #  C  \/  B #  D ) ) )

Proof of Theorem mulext
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
2 simplr 528 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
31, 2mulcld 8128 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  x.  B
)  e.  CC )
4 simprl 529 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
5 simprr 531 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  D  e.  CC )
64, 5mulcld 8128 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  x.  D
)  e.  CC )
74, 2mulcld 8128 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  x.  B
)  e.  CC )
8 apcotr 8715 . . 3  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( C  x.  D
)  e.  CC  /\  ( C  x.  B
)  e.  CC )  ->  ( ( A  x.  B ) #  ( C  x.  D )  ->  ( ( A  x.  B ) #  ( C  x.  B )  \/  ( C  x.  D ) #  ( C  x.  B ) ) ) )
93, 6, 7, 8syl3anc 1250 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  D )  ->  (
( A  x.  B
) #  ( C  x.  B )  \/  ( C  x.  D ) #  ( C  x.  B
) ) ) )
10 mulext1 8720 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  x.  B
) #  ( C  x.  B )  ->  A #  C ) )
111, 4, 2, 10syl3anc 1250 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  B )  ->  A #  C ) )
12 mulext2 8721 . . . . 5  |-  ( ( D  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  x.  D
) #  ( C  x.  B )  ->  D #  B ) )
135, 2, 4, 12syl3anc 1250 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  x.  D ) #  ( C  x.  B )  ->  D #  B ) )
14 apsym 8714 . . . . 5  |-  ( ( D  e.  CC  /\  B  e.  CC )  ->  ( D #  B  <->  B #  D
) )
155, 2, 14syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( D #  B  <->  B #  D
) )
1613, 15sylibd 149 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( C  x.  D ) #  ( C  x.  B )  ->  B #  D ) )
1711, 16orim12d 788 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( ( A  x.  B ) #  ( C  x.  B )  \/  ( C  x.  D ) #  ( C  x.  B ) )  -> 
( A #  C  \/  B #  D ) ) )
189, 17syld 45 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  x.  B ) #  ( C  x.  D )  ->  ( A #  C  \/  B #  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958    x. cmul 7965   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by:  mulap0r  8723  lt2msq  8994  apexp1  10900  absext  11489
  Copyright terms: Public domain W3C validator