ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neg1cn Unicode version

Theorem neg1cn 9089
Description: -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
neg1cn  |-  -u 1  e.  CC

Proof of Theorem neg1cn
StepHypRef Expression
1 ax-1cn 7967 . 2  |-  1  e.  CC
21negcli 8289 1  |-  -u 1  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   CCcc 7872   1c1 7875   -ucneg 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195
This theorem is referenced by:  peano2z  9356  m1expcl2  10635  m1expeven  10660  fsumneg  11597  m1expo  12044  m1exp1  12045  n2dvdsm1  12057  dvmptnegcn  14901  plysubcl  14935  efipi  14977  eulerid  14978  sin2pi  14979  sinmpi  14991  cosmpi  14992  sinppi  14993  cosppi  14994  wilthlem1  15153  lgsneg  15181  lgsdilem  15184  lgsdir2lem3  15187  lgsdir2lem4  15188  lgsdir2  15190  lgsdir  15192  gausslemma2dlem5  15223  gausslemma2d  15226  lgseisenlem1  15227  lgseisenlem2  15228  lgseisenlem4  15230  lgseisen  15231  lgsquadlem1  15234  lgsquadlem2  15235  lgsquadlem3  15236  lgsquad2lem1  15238  lgsquad2lem2  15239  lgsquad3  15241  m1lgs  15242
  Copyright terms: Public domain W3C validator