ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neg1cn GIF version

Theorem neg1cn 9112
Description: -1 is a complex number (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
neg1cn -1 ∈ ℂ

Proof of Theorem neg1cn
StepHypRef Expression
1 ax-1cn 7989 . 2 1 ∈ ℂ
21negcli 8311 1 -1 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cc 7894  1c1 7897  -cneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by:  peano2z  9379  m1expcl2  10670  m1expeven  10695  fsumneg  11633  m1expo  12082  m1exp1  12083  n2dvdsm1  12095  bitsfzo  12137  dvmptnegcn  15042  plysubcl  15076  efipi  15121  eulerid  15122  sin2pi  15123  sinmpi  15135  cosmpi  15136  sinppi  15137  cosppi  15138  wilthlem1  15300  lgsneg  15349  lgsdilem  15352  lgsdir2lem3  15355  lgsdir2lem4  15356  lgsdir2  15358  lgsdir  15360  gausslemma2dlem5  15391  gausslemma2d  15394  lgseisenlem1  15395  lgseisenlem2  15396  lgseisenlem4  15398  lgseisen  15399  lgsquadlem1  15402  lgsquadlem2  15403  lgsquadlem3  15404  lgsquad2lem1  15406  lgsquad2lem2  15407  lgsquad3  15409  m1lgs  15410
  Copyright terms: Public domain W3C validator