ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaass GIF version

Theorem nnaass 6500
Description: Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaass ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))

Proof of Theorem nnaass
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5896 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝐶))
2 oveq2 5896 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
32oveq2d 5904 . . . . . 6 (𝑥 = 𝐶 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝐶)))
41, 3eqeq12d 2202 . . . . 5 (𝑥 = 𝐶 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
54imbi2d 230 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))))
6 oveq2 5896 . . . . . 6 (𝑥 = ∅ → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o ∅))
7 oveq2 5896 . . . . . . 7 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
87oveq2d 5904 . . . . . 6 (𝑥 = ∅ → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o ∅)))
96, 8eqeq12d 2202 . . . . 5 (𝑥 = ∅ → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅))))
10 oveq2 5896 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o 𝑦))
11 oveq2 5896 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
1211oveq2d 5904 . . . . . 6 (𝑥 = 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o 𝑦)))
1310, 12eqeq12d 2202 . . . . 5 (𝑥 = 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦))))
14 oveq2 5896 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 +o 𝐵) +o 𝑥) = ((𝐴 +o 𝐵) +o suc 𝑦))
15 oveq2 5896 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1615oveq2d 5904 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 +o (𝐵 +o 𝑥)) = (𝐴 +o (𝐵 +o suc 𝑦)))
1714, 16eqeq12d 2202 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥)) ↔ ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
18 nnacl 6495 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
19 nna0 6489 . . . . . . 7 ((𝐴 +o 𝐵) ∈ ω → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
2018, 19syl 14 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o 𝐵))
21 nna0 6489 . . . . . . . 8 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
2221oveq2d 5904 . . . . . . 7 (𝐵 ∈ ω → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2322adantl 277 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o (𝐵 +o ∅)) = (𝐴 +o 𝐵))
2420, 23eqtr4d 2223 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) +o ∅) = (𝐴 +o (𝐵 +o ∅)))
25 suceq 4414 . . . . . . 7 (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦)))
26 nnasuc 6491 . . . . . . . . 9 (((𝐴 +o 𝐵) ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
2718, 26sylan 283 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝐵) +o suc 𝑦) = suc ((𝐴 +o 𝐵) +o 𝑦))
28 nnasuc 6491 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
2928oveq2d 5904 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
3029adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω)) → (𝐴 +o (𝐵 +o suc 𝑦)) = (𝐴 +o suc (𝐵 +o 𝑦)))
31 nnacl 6495 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
32 nnasuc 6491 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ (𝐵 +o 𝑦) ∈ ω) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3331, 32sylan2 286 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω)) → (𝐴 +o suc (𝐵 +o 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3430, 33eqtrd 2220 . . . . . . . . 9 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝑦 ∈ ω)) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3534anassrs 400 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω) → (𝐴 +o (𝐵 +o suc 𝑦)) = suc (𝐴 +o (𝐵 +o 𝑦)))
3627, 35eqeq12d 2202 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω) → (((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)) ↔ suc ((𝐴 +o 𝐵) +o 𝑦) = suc (𝐴 +o (𝐵 +o 𝑦))))
3725, 36imbitrrid 156 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦))))
3837expcom 116 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐴 +o 𝐵) +o 𝑦) = (𝐴 +o (𝐵 +o 𝑦)) → ((𝐴 +o 𝐵) +o suc 𝑦) = (𝐴 +o (𝐵 +o suc 𝑦)))))
399, 13, 17, 24, 38finds2 4612 . . . 4 (𝑥 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) +o 𝑥) = (𝐴 +o (𝐵 +o 𝑥))))
405, 39vtoclga 2815 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
4140com12 30 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ ω → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))))
42413impia 1201 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979   = wceq 1363  wcel 2158  c0 3434  suc csuc 4377  ωcom 4601  (class class class)co 5888   +o coa 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-oadd 6435
This theorem is referenced by:  nndi  6501  nnmsucr  6503  addasspig  7343  addassnq0  7475  prarloclemlo  7507
  Copyright terms: Public domain W3C validator