ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwodc Unicode version

Theorem nnwodc 12557
Description: Well-ordering principle: any inhabited decidable set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) (Revised by Jim Kingdon, 23-Oct-2024.)
Assertion
Ref Expression
nnwodc  |-  ( ( A  C_  NN  /\  E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    A, j, w, y    x, A, y

Proof of Theorem nnwodc
StepHypRef Expression
1 nnmindc 12555 . . 3  |-  ( ( A  C_  NN  /\  A. j  e.  NN DECID  j  e.  A  /\  E. w  w  e.  A )  -> inf ( A ,  RR ,  <  )  e.  A )
213com23 1233 . 2  |-  ( ( A  C_  NN  /\  E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  -> inf ( A ,  RR ,  <  )  e.  A )
3 simpl1 1024 . . . 4  |-  ( ( ( A  C_  NN  /\ 
E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  /\  y  e.  A
)  ->  A  C_  NN )
4 simpl3 1026 . . . 4  |-  ( ( ( A  C_  NN  /\ 
E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  /\  y  e.  A
)  ->  A. j  e.  NN DECID  j  e.  A )
5 simpr 110 . . . 4  |-  ( ( ( A  C_  NN  /\ 
E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  /\  y  e.  A
)  ->  y  e.  A )
6 nnminle 12556 . . . 4  |-  ( ( A  C_  NN  /\  A. j  e.  NN DECID  j  e.  A  /\  y  e.  A
)  -> inf ( A ,  RR ,  <  )  <_  y )
73, 4, 5, 6syl3anc 1271 . . 3  |-  ( ( ( A  C_  NN  /\ 
E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  /\  y  e.  A
)  -> inf ( A ,  RR ,  <  )  <_  y )
87ralrimiva 2603 . 2  |-  ( ( A  C_  NN  /\  E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  A. y  e.  A inf ( A ,  RR ,  <  )  <_  y )
9 breq1 4086 . . . 4  |-  ( x  = inf ( A ,  RR ,  <  )  -> 
( x  <_  y  <-> inf ( A ,  RR ,  <  )  <_  y )
)
109ralbidv 2530 . . 3  |-  ( x  = inf ( A ,  RR ,  <  )  -> 
( A. y  e.  A  x  <_  y  <->  A. y  e.  A inf ( A ,  RR ,  <  )  <_  y )
)
1110rspcev 2907 . 2  |-  ( (inf ( A ,  RR ,  <  )  e.  A  /\  A. y  e.  A inf ( A ,  RR ,  <  )  <_  y )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
122, 8, 11syl2anc 411 1  |-  ( ( A  C_  NN  /\  E. w  w  e.  A  /\  A. j  e.  NN DECID  j  e.  A )  ->  E. x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   class class class wbr 4083  infcinf 7150   RRcr 7998    < clt 8181    <_ cle 8182   NNcn 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by:  uzwodc  12558  nnwofdc  12559
  Copyright terms: Public domain W3C validator