ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntopi Unicode version

Theorem nntopi 7579
Description: Mapping from  NN to  N.. (Contributed by Jim Kingdon, 13-Jul-2021.)
Hypothesis
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
nntopi  |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
Distinct variable groups:    x, y    z, A    z, N, y, x   
u, l, z, y, x
Allowed substitution hints:    A( x, y, u, l)    N( u, l)

Proof of Theorem nntopi
Dummy variables  w  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nntopi.n . 2  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2 eqeq2 2109 . . 3  |-  ( w  =  1  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 ) )
32rexbidv 2397 . 2  |-  ( w  =  1  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 ) )
4 eqeq2 2109 . . 3  |-  ( w  =  k  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )
54rexbidv 2397 . 2  |-  ( w  =  k  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )
6 eqeq2 2109 . . 3  |-  ( w  =  ( k  +  1 )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
76rexbidv 2397 . 2  |-  ( w  =  ( k  +  1 )  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
8 eqeq2 2109 . . 3  |-  ( w  =  A  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A ) )
98rexbidv 2397 . 2  |-  ( w  =  A  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A ) )
10 1pi 7024 . . 3  |-  1o  e.  N.
11 eqid 2100 . . 3  |-  1  =  1
12 opeq1 3652 . . . . . . . . . . . . . . . . 17  |-  ( z  =  1o  ->  <. z ,  1o >.  =  <. 1o ,  1o >. )
1312eceq1d 6395 . . . . . . . . . . . . . . . 16  |-  ( z  =  1o  ->  [ <. z ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
14 df-1nqqs 7060 . . . . . . . . . . . . . . . 16  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1513, 14syl6eqr 2150 . . . . . . . . . . . . . . 15  |-  ( z  =  1o  ->  [ <. z ,  1o >. ]  ~Q  =  1Q )
1615breq2d 3887 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  (
l  <Q  [ <. z ,  1o >. ]  ~Q  <->  l  <Q  1Q ) )
1716abbidv 2217 . . . . . . . . . . . . 13  |-  ( z  =  1o  ->  { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  1Q } )
1815breq1d 3885 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  u  <->  1Q 
<Q  u ) )
1918abbidv 2217 . . . . . . . . . . . . 13  |-  ( z  =  1o  ->  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u }  =  { u  |  1Q  <Q  u }
)
2017, 19opeq12d 3660 . . . . . . . . . . . 12  |-  ( z  =  1o  ->  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >. )
21 df-i1p 7176 . . . . . . . . . . . 12  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
2220, 21syl6eqr 2150 . . . . . . . . . . 11  |-  ( z  =  1o  ->  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  =  1P )
2322oveq1d 5721 . . . . . . . . . 10  |-  ( z  =  1o  ->  ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( 1P  +P.  1P ) )
2423opeq1d 3658 . . . . . . . . 9  |-  ( z  =  1o  ->  <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( 1P  +P.  1P ) ,  1P >. )
2524eceq1d 6395 . . . . . . . 8  |-  ( z  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
26 df-1r 7428 . . . . . . . 8  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2725, 26syl6eqr 2150 . . . . . . 7  |-  ( z  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  1R )
2827opeq1d 3658 . . . . . 6  |-  ( z  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. 1R ,  0R >. )
29 df-1 7508 . . . . . 6  |-  1  =  <. 1R ,  0R >.
3028, 29syl6eqr 2150 . . . . 5  |-  ( z  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 )
3130eqeq1d 2108 . . . 4  |-  ( z  =  1o  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1  <->  1  =  1 ) )
3231rspcev 2744 . . 3  |-  ( ( 1o  e.  N.  /\  1  =  1 )  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 )
3310, 11, 32mp2an 420 . 2  |-  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
34 simplr 500 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  z  e.  N. )
35 addclpi 7036 . . . . . . 7  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
3634, 10, 35sylancl 407 . . . . . 6  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( z  +N  1o )  e.  N. )
37 pitonnlem2 7534 . . . . . . . 8  |-  ( z  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3834, 37syl 14 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
39 simpr 109 . . . . . . . 8  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )
4039oveq1d 5721 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  ( k  +  1 ) )
4138, 40eqtr3d 2134 . . . . . 6  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  (
k  +  1 ) )
42 opeq1 3652 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( z  +N  1o )  ->  <. v ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
4342eceq1d 6395 . . . . . . . . . . . . . . 15  |-  ( v  =  ( z  +N  1o )  ->  [ <. v ,  1o >. ]  ~Q  =  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
4443breq2d 3887 . . . . . . . . . . . . . 14  |-  ( v  =  ( z  +N  1o )  ->  (
l  <Q  [ <. v ,  1o >. ]  ~Q  <->  l  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  ) )
4544abbidv 2217 . . . . . . . . . . . . 13  |-  ( v  =  ( z  +N  1o )  ->  { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } )
4643breq1d 3885 . . . . . . . . . . . . . 14  |-  ( v  =  ( z  +N  1o )  ->  ( [ <. v ,  1o >. ]  ~Q  <Q  u  <->  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u ) )
4746abbidv 2217 . . . . . . . . . . . . 13  |-  ( v  =  ( z  +N  1o )  ->  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } )
4845, 47opeq12d 3660 . . . . . . . . . . . 12  |-  ( v  =  ( z  +N  1o )  ->  <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >. )
4948oveq1d 5721 . . . . . . . . . . 11  |-  ( v  =  ( z  +N  1o )  ->  ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
5049opeq1d 3658 . . . . . . . . . 10  |-  ( v  =  ( z  +N  1o )  ->  <. ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
5150eceq1d 6395 . . . . . . . . 9  |-  ( v  =  ( z  +N  1o )  ->  [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
5251opeq1d 3658 . . . . . . . 8  |-  ( v  =  ( z  +N  1o )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
5352eqeq1d 2108 . . . . . . 7  |-  ( v  =  ( z  +N  1o )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  (
k  +  1 ) ) )
5453rspcev 2744 . . . . . 6  |-  ( ( ( z  +N  1o )  e.  N.  /\  <. [
<. ( <. { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
5536, 41, 54syl2anc 406 . . . . 5  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
5655ex 114 . . . 4  |-  ( ( k  e.  N  /\  z  e.  N. )  ->  ( <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
5756rexlimdva 2508 . . 3  |-  ( k  e.  N  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
58 opeq1 3652 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  <. v ,  1o >.  =  <. z ,  1o >. )
5958eceq1d 6395 . . . . . . . . . . . 12  |-  ( v  =  z  ->  [ <. v ,  1o >. ]  ~Q  =  [ <. z ,  1o >. ]  ~Q  )
6059breq2d 3887 . . . . . . . . . . 11  |-  ( v  =  z  ->  (
l  <Q  [ <. v ,  1o >. ]  ~Q  <->  l  <Q  [
<. z ,  1o >. ]  ~Q  ) )
6160abbidv 2217 . . . . . . . . . 10  |-  ( v  =  z  ->  { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  }
)
6259breq1d 3885 . . . . . . . . . . 11  |-  ( v  =  z  ->  ( [ <. v ,  1o >. ]  ~Q  <Q  u  <->  [
<. z ,  1o >. ]  ~Q  <Q  u )
)
6362abbidv 2217 . . . . . . . . . 10  |-  ( v  =  z  ->  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } )
6461, 63opeq12d 3660 . . . . . . . . 9  |-  ( v  =  z  ->  <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >. )
6564oveq1d 5721 . . . . . . . 8  |-  ( v  =  z  ->  ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
6665opeq1d 3658 . . . . . . 7  |-  ( v  =  z  ->  <. ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
6766eceq1d 6395 . . . . . 6  |-  ( v  =  z  ->  [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
6867opeq1d 3658 . . . . 5  |-  ( v  =  z  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6968eqeq1d 2108 . . . 4  |-  ( v  =  z  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
7069cbvrexv 2613 . . 3  |-  ( E. v  e.  N.  <. [
<. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
7157, 70syl6ib 160 . 2  |-  ( k  e.  N  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
721, 3, 5, 7, 9, 33, 71nnindnn 7578 1  |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   {cab 2086   A.wral 2375   E.wrex 2376   <.cop 3477   |^|cint 3718   class class class wbr 3875  (class class class)co 5706   1oc1o 6236   [cec 6357   N.cnpi 6981    +N cpli 6982    ~Q ceq 6988   1Qc1q 6990    <Q cltq 6994   1Pc1p 7001    +P. cpp 7002    ~R cer 7005   0Rc0r 7007   1Rc1r 7008   1c1 7501    + caddc 7503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-i1p 7176  df-iplp 7177  df-enr 7422  df-nr 7423  df-plr 7424  df-0r 7427  df-1r 7428  df-c 7506  df-1 7508  df-r 7510  df-add 7511
This theorem is referenced by:  axcaucvglemres  7584
  Copyright terms: Public domain W3C validator