ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntopi Unicode version

Theorem nntopi 7835
Description: Mapping from  NN to  N.. (Contributed by Jim Kingdon, 13-Jul-2021.)
Hypothesis
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
nntopi  |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
Distinct variable groups:    x, y    z, A    z, N, y, x   
u, l, z, y, x
Allowed substitution hints:    A( x, y, u, l)    N( u, l)

Proof of Theorem nntopi
Dummy variables  w  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nntopi.n . 2  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2 eqeq2 2175 . . 3  |-  ( w  =  1  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 ) )
32rexbidv 2467 . 2  |-  ( w  =  1  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 ) )
4 eqeq2 2175 . . 3  |-  ( w  =  k  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )
54rexbidv 2467 . 2  |-  ( w  =  k  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )
6 eqeq2 2175 . . 3  |-  ( w  =  ( k  +  1 )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
76rexbidv 2467 . 2  |-  ( w  =  ( k  +  1 )  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
8 eqeq2 2175 . . 3  |-  ( w  =  A  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A ) )
98rexbidv 2467 . 2  |-  ( w  =  A  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A ) )
10 1pi 7256 . . 3  |-  1o  e.  N.
11 eqid 2165 . . 3  |-  1  =  1
12 opeq1 3758 . . . . . . . . . . . . . . . . 17  |-  ( z  =  1o  ->  <. z ,  1o >.  =  <. 1o ,  1o >. )
1312eceq1d 6537 . . . . . . . . . . . . . . . 16  |-  ( z  =  1o  ->  [ <. z ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
14 df-1nqqs 7292 . . . . . . . . . . . . . . . 16  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1513, 14eqtr4di 2217 . . . . . . . . . . . . . . 15  |-  ( z  =  1o  ->  [ <. z ,  1o >. ]  ~Q  =  1Q )
1615breq2d 3994 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  (
l  <Q  [ <. z ,  1o >. ]  ~Q  <->  l  <Q  1Q ) )
1716abbidv 2284 . . . . . . . . . . . . 13  |-  ( z  =  1o  ->  { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  1Q } )
1815breq1d 3992 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  u  <->  1Q 
<Q  u ) )
1918abbidv 2284 . . . . . . . . . . . . 13  |-  ( z  =  1o  ->  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u }  =  { u  |  1Q  <Q  u }
)
2017, 19opeq12d 3766 . . . . . . . . . . . 12  |-  ( z  =  1o  ->  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >. )
21 df-i1p 7408 . . . . . . . . . . . 12  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
2220, 21eqtr4di 2217 . . . . . . . . . . 11  |-  ( z  =  1o  ->  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  =  1P )
2322oveq1d 5857 . . . . . . . . . 10  |-  ( z  =  1o  ->  ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( 1P  +P.  1P ) )
2423opeq1d 3764 . . . . . . . . 9  |-  ( z  =  1o  ->  <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( 1P  +P.  1P ) ,  1P >. )
2524eceq1d 6537 . . . . . . . 8  |-  ( z  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
26 df-1r 7673 . . . . . . . 8  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2725, 26eqtr4di 2217 . . . . . . 7  |-  ( z  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  1R )
2827opeq1d 3764 . . . . . 6  |-  ( z  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. 1R ,  0R >. )
29 df-1 7761 . . . . . 6  |-  1  =  <. 1R ,  0R >.
3028, 29eqtr4di 2217 . . . . 5  |-  ( z  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 )
3130eqeq1d 2174 . . . 4  |-  ( z  =  1o  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1  <->  1  =  1 ) )
3231rspcev 2830 . . 3  |-  ( ( 1o  e.  N.  /\  1  =  1 )  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 )
3310, 11, 32mp2an 423 . 2  |-  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
34 simplr 520 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  z  e.  N. )
35 addclpi 7268 . . . . . . 7  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
3634, 10, 35sylancl 410 . . . . . 6  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( z  +N  1o )  e.  N. )
37 pitonnlem2 7788 . . . . . . . 8  |-  ( z  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3834, 37syl 14 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
39 simpr 109 . . . . . . . 8  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )
4039oveq1d 5857 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  ( k  +  1 ) )
4138, 40eqtr3d 2200 . . . . . 6  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  (
k  +  1 ) )
42 opeq1 3758 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( z  +N  1o )  ->  <. v ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
4342eceq1d 6537 . . . . . . . . . . . . . . 15  |-  ( v  =  ( z  +N  1o )  ->  [ <. v ,  1o >. ]  ~Q  =  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
4443breq2d 3994 . . . . . . . . . . . . . 14  |-  ( v  =  ( z  +N  1o )  ->  (
l  <Q  [ <. v ,  1o >. ]  ~Q  <->  l  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  ) )
4544abbidv 2284 . . . . . . . . . . . . 13  |-  ( v  =  ( z  +N  1o )  ->  { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } )
4643breq1d 3992 . . . . . . . . . . . . . 14  |-  ( v  =  ( z  +N  1o )  ->  ( [ <. v ,  1o >. ]  ~Q  <Q  u  <->  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u ) )
4746abbidv 2284 . . . . . . . . . . . . 13  |-  ( v  =  ( z  +N  1o )  ->  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } )
4845, 47opeq12d 3766 . . . . . . . . . . . 12  |-  ( v  =  ( z  +N  1o )  ->  <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >. )
4948oveq1d 5857 . . . . . . . . . . 11  |-  ( v  =  ( z  +N  1o )  ->  ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
5049opeq1d 3764 . . . . . . . . . 10  |-  ( v  =  ( z  +N  1o )  ->  <. ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
5150eceq1d 6537 . . . . . . . . 9  |-  ( v  =  ( z  +N  1o )  ->  [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
5251opeq1d 3764 . . . . . . . 8  |-  ( v  =  ( z  +N  1o )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
5352eqeq1d 2174 . . . . . . 7  |-  ( v  =  ( z  +N  1o )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  (
k  +  1 ) ) )
5453rspcev 2830 . . . . . 6  |-  ( ( ( z  +N  1o )  e.  N.  /\  <. [
<. ( <. { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
5536, 41, 54syl2anc 409 . . . . 5  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
5655ex 114 . . . 4  |-  ( ( k  e.  N  /\  z  e.  N. )  ->  ( <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
5756rexlimdva 2583 . . 3  |-  ( k  e.  N  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
58 opeq1 3758 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  <. v ,  1o >.  =  <. z ,  1o >. )
5958eceq1d 6537 . . . . . . . . . . . 12  |-  ( v  =  z  ->  [ <. v ,  1o >. ]  ~Q  =  [ <. z ,  1o >. ]  ~Q  )
6059breq2d 3994 . . . . . . . . . . 11  |-  ( v  =  z  ->  (
l  <Q  [ <. v ,  1o >. ]  ~Q  <->  l  <Q  [
<. z ,  1o >. ]  ~Q  ) )
6160abbidv 2284 . . . . . . . . . 10  |-  ( v  =  z  ->  { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  }
)
6259breq1d 3992 . . . . . . . . . . 11  |-  ( v  =  z  ->  ( [ <. v ,  1o >. ]  ~Q  <Q  u  <->  [
<. z ,  1o >. ]  ~Q  <Q  u )
)
6362abbidv 2284 . . . . . . . . . 10  |-  ( v  =  z  ->  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } )
6461, 63opeq12d 3766 . . . . . . . . 9  |-  ( v  =  z  ->  <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >. )
6564oveq1d 5857 . . . . . . . 8  |-  ( v  =  z  ->  ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
6665opeq1d 3764 . . . . . . 7  |-  ( v  =  z  ->  <. ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
6766eceq1d 6537 . . . . . 6  |-  ( v  =  z  ->  [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
6867opeq1d 3764 . . . . 5  |-  ( v  =  z  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6968eqeq1d 2174 . . . 4  |-  ( v  =  z  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
7069cbvrexv 2693 . . 3  |-  ( E. v  e.  N.  <. [
<. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
7157, 70syl6ib 160 . 2  |-  ( k  e.  N  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
721, 3, 5, 7, 9, 33, 71nnindnn 7834 1  |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   <.cop 3579   |^|cint 3824   class class class wbr 3982  (class class class)co 5842   1oc1o 6377   [cec 6499   N.cnpi 7213    +N cpli 7214    ~Q ceq 7220   1Qc1q 7222    <Q cltq 7226   1Pc1p 7233    +P. cpp 7234    ~R cer 7237   0Rc0r 7239   1Rc1r 7240   1c1 7754    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-enr 7667  df-nr 7668  df-plr 7669  df-0r 7672  df-1r 7673  df-c 7759  df-1 7761  df-r 7763  df-add 7764
This theorem is referenced by:  axcaucvglemres  7840
  Copyright terms: Public domain W3C validator