ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntopi Unicode version

Theorem nntopi 7670
Description: Mapping from  NN to  N.. (Contributed by Jim Kingdon, 13-Jul-2021.)
Hypothesis
Ref Expression
nntopi.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Assertion
Ref Expression
nntopi  |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
Distinct variable groups:    x, y    z, A    z, N, y, x   
u, l, z, y, x
Allowed substitution hints:    A( x, y, u, l)    N( u, l)

Proof of Theorem nntopi
Dummy variables  w  k  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nntopi.n . 2  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2 eqeq2 2127 . . 3  |-  ( w  =  1  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 ) )
32rexbidv 2415 . 2  |-  ( w  =  1  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 ) )
4 eqeq2 2127 . . 3  |-  ( w  =  k  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )
54rexbidv 2415 . 2  |-  ( w  =  k  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k ) )
6 eqeq2 2127 . . 3  |-  ( w  =  ( k  +  1 )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
76rexbidv 2415 . 2  |-  ( w  =  ( k  +  1 )  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
8 eqeq2 2127 . . 3  |-  ( w  =  A  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A ) )
98rexbidv 2415 . 2  |-  ( w  =  A  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  w  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A ) )
10 1pi 7091 . . 3  |-  1o  e.  N.
11 eqid 2117 . . 3  |-  1  =  1
12 opeq1 3675 . . . . . . . . . . . . . . . . 17  |-  ( z  =  1o  ->  <. z ,  1o >.  =  <. 1o ,  1o >. )
1312eceq1d 6433 . . . . . . . . . . . . . . . 16  |-  ( z  =  1o  ->  [ <. z ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
14 df-1nqqs 7127 . . . . . . . . . . . . . . . 16  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
1513, 14syl6eqr 2168 . . . . . . . . . . . . . . 15  |-  ( z  =  1o  ->  [ <. z ,  1o >. ]  ~Q  =  1Q )
1615breq2d 3911 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  (
l  <Q  [ <. z ,  1o >. ]  ~Q  <->  l  <Q  1Q ) )
1716abbidv 2235 . . . . . . . . . . . . 13  |-  ( z  =  1o  ->  { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  1Q } )
1815breq1d 3909 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  u  <->  1Q 
<Q  u ) )
1918abbidv 2235 . . . . . . . . . . . . 13  |-  ( z  =  1o  ->  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u }  =  { u  |  1Q  <Q  u }
)
2017, 19opeq12d 3683 . . . . . . . . . . . 12  |-  ( z  =  1o  ->  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >. )
21 df-i1p 7243 . . . . . . . . . . . 12  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
2220, 21syl6eqr 2168 . . . . . . . . . . 11  |-  ( z  =  1o  ->  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  =  1P )
2322oveq1d 5757 . . . . . . . . . 10  |-  ( z  =  1o  ->  ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( 1P  +P.  1P ) )
2423opeq1d 3681 . . . . . . . . 9  |-  ( z  =  1o  ->  <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( 1P  +P.  1P ) ,  1P >. )
2524eceq1d 6433 . . . . . . . 8  |-  ( z  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
26 df-1r 7508 . . . . . . . 8  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2725, 26syl6eqr 2168 . . . . . . 7  |-  ( z  =  1o  ->  [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  1R )
2827opeq1d 3681 . . . . . 6  |-  ( z  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. 1R ,  0R >. )
29 df-1 7596 . . . . . 6  |-  1  =  <. 1R ,  0R >.
3028, 29syl6eqr 2168 . . . . 5  |-  ( z  =  1o  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 )
3130eqeq1d 2126 . . . 4  |-  ( z  =  1o  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1  <->  1  =  1 ) )
3231rspcev 2763 . . 3  |-  ( ( 1o  e.  N.  /\  1  =  1 )  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1 )
3310, 11, 32mp2an 422 . 2  |-  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
34 simplr 504 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  z  e.  N. )
35 addclpi 7103 . . . . . . 7  |-  ( ( z  e.  N.  /\  1o  e.  N. )  -> 
( z  +N  1o )  e.  N. )
3634, 10, 35sylancl 409 . . . . . 6  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( z  +N  1o )  e.  N. )
37 pitonnlem2 7623 . . . . . . . 8  |-  ( z  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3834, 37syl 14 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
39 simpr 109 . . . . . . . 8  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )
4039oveq1d 5757 . . . . . . 7  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  ( k  +  1 ) )
4138, 40eqtr3d 2152 . . . . . 6  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  <. [ <. ( <. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  (
k  +  1 ) )
42 opeq1 3675 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( z  +N  1o )  ->  <. v ,  1o >.  =  <. ( z  +N  1o ) ,  1o >. )
4342eceq1d 6433 . . . . . . . . . . . . . . 15  |-  ( v  =  ( z  +N  1o )  ->  [ <. v ,  1o >. ]  ~Q  =  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  )
4443breq2d 3911 . . . . . . . . . . . . . 14  |-  ( v  =  ( z  +N  1o )  ->  (
l  <Q  [ <. v ,  1o >. ]  ~Q  <->  l  <Q  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  ) )
4544abbidv 2235 . . . . . . . . . . . . 13  |-  ( v  =  ( z  +N  1o )  ->  { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } )
4643breq1d 3909 . . . . . . . . . . . . . 14  |-  ( v  =  ( z  +N  1o )  ->  ( [ <. v ,  1o >. ]  ~Q  <Q  u  <->  [
<. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u ) )
4746abbidv 2235 . . . . . . . . . . . . 13  |-  ( v  =  ( z  +N  1o )  ->  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } )
4845, 47opeq12d 3683 . . . . . . . . . . . 12  |-  ( v  =  ( z  +N  1o )  ->  <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >. )
4948oveq1d 5757 . . . . . . . . . . 11  |-  ( v  =  ( z  +N  1o )  ->  ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
5049opeq1d 3681 . . . . . . . . . 10  |-  ( v  =  ( z  +N  1o )  ->  <. ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
5150eceq1d 6433 . . . . . . . . 9  |-  ( v  =  ( z  +N  1o )  ->  [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
5251opeq1d 3681 . . . . . . . 8  |-  ( v  =  ( z  +N  1o )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
5352eqeq1d 2126 . . . . . . 7  |-  ( v  =  ( z  +N  1o )  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  (
k  +  1 ) ) )
5453rspcev 2763 . . . . . 6  |-  ( ( ( z  +N  1o )  e.  N.  /\  <. [
<. ( <. { l  |  l  <Q  [ <. (
z  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( z  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
5536, 41, 54syl2anc 408 . . . . 5  |-  ( ( ( k  e.  N  /\  z  e.  N. )  /\  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k )  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
5655ex 114 . . . 4  |-  ( ( k  e.  N  /\  z  e.  N. )  ->  ( <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
5756rexlimdva 2526 . . 3  |-  ( k  e.  N  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. v  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
58 opeq1 3675 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  <. v ,  1o >.  =  <. z ,  1o >. )
5958eceq1d 6433 . . . . . . . . . . . 12  |-  ( v  =  z  ->  [ <. v ,  1o >. ]  ~Q  =  [ <. z ,  1o >. ]  ~Q  )
6059breq2d 3911 . . . . . . . . . . 11  |-  ( v  =  z  ->  (
l  <Q  [ <. v ,  1o >. ]  ~Q  <->  l  <Q  [
<. z ,  1o >. ]  ~Q  ) )
6160abbidv 2235 . . . . . . . . . 10  |-  ( v  =  z  ->  { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  }
)
6259breq1d 3909 . . . . . . . . . . 11  |-  ( v  =  z  ->  ( [ <. v ,  1o >. ]  ~Q  <Q  u  <->  [
<. z ,  1o >. ]  ~Q  <Q  u )
)
6362abbidv 2235 . . . . . . . . . 10  |-  ( v  =  z  ->  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } )
6461, 63opeq12d 3683 . . . . . . . . 9  |-  ( v  =  z  ->  <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >. )
6564oveq1d 5757 . . . . . . . 8  |-  ( v  =  z  ->  ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
6665opeq1d 3681 . . . . . . 7  |-  ( v  =  z  ->  <. ( <. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
6766eceq1d 6433 . . . . . 6  |-  ( v  =  z  ->  [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
6867opeq1d 3681 . . . . 5  |-  ( v  =  z  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6968eqeq1d 2126 . . . 4  |-  ( v  =  z  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
7069cbvrexv 2632 . . 3  |-  ( E. v  e.  N.  <. [
<. ( <. { l  |  l  <Q  [ <. v ,  1o >. ]  ~Q  } ,  { u  |  [ <. v ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 )  <->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) )
7157, 70syl6ib 160 . 2  |-  ( k  e.  N  ->  ( E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  k  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  ( k  +  1 ) ) )
721, 3, 5, 7, 9, 33, 71nnindnn 7669 1  |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l 
<Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   {cab 2103   A.wral 2393   E.wrex 2394   <.cop 3500   |^|cint 3741   class class class wbr 3899  (class class class)co 5742   1oc1o 6274   [cec 6395   N.cnpi 7048    +N cpli 7049    ~Q ceq 7055   1Qc1q 7057    <Q cltq 7061   1Pc1p 7068    +P. cpp 7069    ~R cer 7072   0Rc0r 7074   1Rc1r 7075   1c1 7589    + caddc 7591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-enr 7502  df-nr 7503  df-plr 7504  df-0r 7507  df-1r 7508  df-c 7594  df-1 7596  df-r 7598  df-add 7599
This theorem is referenced by:  axcaucvglemres  7675
  Copyright terms: Public domain W3C validator