ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgg Unicode version

Theorem frecuzrdgg 10487
Description: Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating  R at a natural number gives an ordered pair whose first element is the mapping of that natural number via  G. (Contributed by Jim Kingdon, 23-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgg.n  |-  ( ph  ->  N  e.  om )
frecuzrdgg.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frecuzrdgg  |-  ( ph  ->  ( 1st `  ( R `  N )
)  =  ( G `
 N ) )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, G, y    x, R, y
Allowed substitution hints:    A( x, y)    N( x, y)

Proof of Theorem frecuzrdgg
Dummy variables  z  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgg.n . 2  |-  ( ph  ->  N  e.  om )
2 fveq2 5554 . . . . . 6  |-  ( w  =  (/)  ->  ( R `
 w )  =  ( R `  (/) ) )
32fveq2d 5558 . . . . 5  |-  ( w  =  (/)  ->  ( 1st `  ( R `  w
) )  =  ( 1st `  ( R `
 (/) ) ) )
4 fveq2 5554 . . . . 5  |-  ( w  =  (/)  ->  ( G `
 w )  =  ( G `  (/) ) )
53, 4eqeq12d 2208 . . . 4  |-  ( w  =  (/)  ->  ( ( 1st `  ( R `
 w ) )  =  ( G `  w )  <->  ( 1st `  ( R `  (/) ) )  =  ( G `  (/) ) ) )
65imbi2d 230 . . 3  |-  ( w  =  (/)  ->  ( (
ph  ->  ( 1st `  ( R `  w )
)  =  ( G `
 w ) )  <-> 
( ph  ->  ( 1st `  ( R `  (/) ) )  =  ( G `  (/) ) ) ) )
7 fveq2 5554 . . . . . 6  |-  ( w  =  k  ->  ( R `  w )  =  ( R `  k ) )
87fveq2d 5558 . . . . 5  |-  ( w  =  k  ->  ( 1st `  ( R `  w ) )  =  ( 1st `  ( R `  k )
) )
9 fveq2 5554 . . . . 5  |-  ( w  =  k  ->  ( G `  w )  =  ( G `  k ) )
108, 9eqeq12d 2208 . . . 4  |-  ( w  =  k  ->  (
( 1st `  ( R `  w )
)  =  ( G `
 w )  <->  ( 1st `  ( R `  k
) )  =  ( G `  k ) ) )
1110imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( 1st `  ( R `  w
) )  =  ( G `  w ) )  <->  ( ph  ->  ( 1st `  ( R `
 k ) )  =  ( G `  k ) ) ) )
12 fveq2 5554 . . . . . 6  |-  ( w  =  suc  k  -> 
( R `  w
)  =  ( R `
 suc  k )
)
1312fveq2d 5558 . . . . 5  |-  ( w  =  suc  k  -> 
( 1st `  ( R `  w )
)  =  ( 1st `  ( R `  suc  k ) ) )
14 fveq2 5554 . . . . 5  |-  ( w  =  suc  k  -> 
( G `  w
)  =  ( G `
 suc  k )
)
1513, 14eqeq12d 2208 . . . 4  |-  ( w  =  suc  k  -> 
( ( 1st `  ( R `  w )
)  =  ( G `
 w )  <->  ( 1st `  ( R `  suc  k ) )  =  ( G `  suc  k ) ) )
1615imbi2d 230 . . 3  |-  ( w  =  suc  k  -> 
( ( ph  ->  ( 1st `  ( R `
 w ) )  =  ( G `  w ) )  <->  ( ph  ->  ( 1st `  ( R `  suc  k ) )  =  ( G `
 suc  k )
) ) )
17 fveq2 5554 . . . . . 6  |-  ( w  =  N  ->  ( R `  w )  =  ( R `  N ) )
1817fveq2d 5558 . . . . 5  |-  ( w  =  N  ->  ( 1st `  ( R `  w ) )  =  ( 1st `  ( R `  N )
) )
19 fveq2 5554 . . . . 5  |-  ( w  =  N  ->  ( G `  w )  =  ( G `  N ) )
2018, 19eqeq12d 2208 . . . 4  |-  ( w  =  N  ->  (
( 1st `  ( R `  w )
)  =  ( G `
 w )  <->  ( 1st `  ( R `  N
) )  =  ( G `  N ) ) )
2120imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  ( 1st `  ( R `  w
) )  =  ( G `  w ) )  <->  ( ph  ->  ( 1st `  ( R `
 N ) )  =  ( G `  N ) ) ) )
22 frecuzrdgrclt.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
23 frecuzrdgrclt.a . . . . 5  |-  ( ph  ->  A  e.  S )
24 op1stg 6203 . . . . 5  |-  ( ( C  e.  ZZ  /\  A  e.  S )  ->  ( 1st `  <. C ,  A >. )  =  C )
2522, 23, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( 1st `  <. C ,  A >. )  =  C )
26 frecuzrdgrclt.r . . . . . . 7  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
2726fveq1i 5555 . . . . . 6  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
28 opexg 4257 . . . . . . . 8  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
29 frec0g 6450 . . . . . . . 8  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
3028, 29syl 14 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  A  e.  S )  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
3122, 23, 30syl2anc 411 . . . . . 6  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
3227, 31eqtrid 2238 . . . . 5  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
3332fveq2d 5558 . . . 4  |-  ( ph  ->  ( 1st `  ( R `  (/) ) )  =  ( 1st `  <. C ,  A >. )
)
34 frecuzrdgg.g . . . . 5  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3522, 34frec2uz0d 10470 . . . 4  |-  ( ph  ->  ( G `  (/) )  =  C )
3625, 33, 353eqtr4d 2236 . . 3  |-  ( ph  ->  ( 1st `  ( R `  (/) ) )  =  ( G `  (/) ) )
3722, 34frec2uzf1od 10477 . . . . . . . . . . 11  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
38 f1of 5500 . . . . . . . . . . 11  |-  ( G : om -1-1-onto-> ( ZZ>= `  C )  ->  G : om --> ( ZZ>= `  C ) )
3937, 38syl 14 . . . . . . . . . 10  |-  ( ph  ->  G : om --> ( ZZ>= `  C ) )
4039ad2antlr 489 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  G : om --> ( ZZ>= `  C
) )
41 simpll 527 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  k  e.  om )
4240, 41ffvelcdmd 5694 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( G `  k )  e.  ( ZZ>= `  C )
)
43 peano2uz 9648 . . . . . . . 8  |-  ( ( G `  k )  e.  ( ZZ>= `  C
)  ->  ( ( G `  k )  +  1 )  e.  ( ZZ>= `  C )
)
4442, 43syl 14 . . . . . . 7  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  (
( G `  k
)  +  1 )  e.  ( ZZ>= `  C
) )
45 oveq2 5926 . . . . . . . . 9  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( ( G `  k ) F y )  =  ( ( G `  k ) F ( 2nd `  ( R `
 k ) ) ) )
4645eleq1d 2262 . . . . . . . 8  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( (
( G `  k
) F y )  e.  S  <->  ( ( G `  k ) F ( 2nd `  ( R `  k )
) )  e.  S
) )
47 oveq1 5925 . . . . . . . . . . 11  |-  ( x  =  ( G `  k )  ->  (
x F y )  =  ( ( G `
 k ) F y ) )
4847eleq1d 2262 . . . . . . . . . 10  |-  ( x  =  ( G `  k )  ->  (
( x F y )  e.  S  <->  ( ( G `  k ) F y )  e.  S ) )
4948ralbidv 2494 . . . . . . . . 9  |-  ( x  =  ( G `  k )  ->  ( A. y  e.  S  ( x F y )  e.  S  <->  A. y  e.  S  ( ( G `  k ) F y )  e.  S ) )
50 frecuzrdgrclt.f . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5150ralrimivva 2576 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  (
ZZ>= `  C ) A. y  e.  S  (
x F y )  e.  S )
5251ad2antlr 489 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S )
5349, 52, 42rspcdva 2869 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  A. y  e.  S  ( ( G `  k ) F y )  e.  S )
54 frecuzrdgrclt.t . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  T )
5522, 23, 54, 50, 26frecuzrdgrclt 10486 . . . . . . . . . . 11  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
5655ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  R : om --> ( ( ZZ>= `  C )  X.  S
) )
5756, 41ffvelcdmd 5694 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( R `  k )  e.  ( ( ZZ>= `  C
)  X.  S ) )
58 xp2nd 6219 . . . . . . . . 9  |-  ( ( R `  k )  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  ( R `  k
) )  e.  S
)
5957, 58syl 14 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( 2nd `  ( R `  k ) )  e.  S )
6046, 53, 59rspcdva 2869 . . . . . . 7  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  (
( G `  k
) F ( 2nd `  ( R `  k
) ) )  e.  S )
61 op1stg 6203 . . . . . . 7  |-  ( ( ( ( G `  k )  +  1 )  e.  ( ZZ>= `  C )  /\  (
( G `  k
) F ( 2nd `  ( R `  k
) ) )  e.  S )  ->  ( 1st `  <. ( ( G `
 k )  +  1 ) ,  ( ( G `  k
) F ( 2nd `  ( R `  k
) ) ) >.
)  =  ( ( G `  k )  +  1 ) )
6244, 60, 61syl2anc 411 . . . . . 6  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( 1st `  <. ( ( G `
 k )  +  1 ) ,  ( ( G `  k
) F ( 2nd `  ( R `  k
) ) ) >.
)  =  ( ( G `  k )  +  1 ) )
63 1st2nd2 6228 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
6463adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
6564fveq2d 5558 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
66 df-ov 5921 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  z ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
67 xp1st 6218 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
6867adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( 1st `  z
)  e.  ( ZZ>= `  C ) )
6954ad3antlr 493 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  ->  S  C_  T )
70 xp2nd 6219 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  z )  e.  S
)
7170adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( 2nd `  z
)  e.  S )
7269, 71sseldd 3180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( 2nd `  z
)  e.  T )
73 peano2uz 9648 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  z )  e.  ( ZZ>= `  C
)  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
7468, 73syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( ( 1st `  z
)  +  1 )  e.  ( ZZ>= `  C
) )
75 oveq2 5926 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z ) F y )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
7675eleq1d 2262 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
) F y )  e.  S  <->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
77 oveq1 5925 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( 1st `  z
)  ->  ( x F y )  =  ( ( 1st `  z
) F y ) )
7877eleq1d 2262 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( 1st `  z
)  ->  ( (
x F y )  e.  S  <->  ( ( 1st `  z ) F y )  e.  S
) )
7978ralbidv 2494 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( 1st `  z
)  ->  ( A. y  e.  S  (
x F y )  e.  S  <->  A. y  e.  S  ( ( 1st `  z ) F y )  e.  S
) )
8051ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  ->  A. x  e.  ( ZZ>=
`  C ) A. y  e.  S  (
x F y )  e.  S )
8179, 80, 68rspcdva 2869 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  ->  A. y  e.  S  ( ( 1st `  z
) F y )  e.  S )
8276, 81, 71rspcdva 2869 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( ( 1st `  z
) F ( 2nd `  z ) )  e.  S )
83 opelxpi 4691 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 1st `  z
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
8474, 82, 83syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  ->  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )
85 oveq1 5925 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  1 )  =  ( ( 1st `  z
)  +  1 ) )
8685, 77opeq12d 3812 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( 1st `  z
)  ->  <. ( x  +  1 ) ,  ( x F y ) >.  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F y ) >. )
8775opeq2d 3811 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( 2nd `  z
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F y )
>.  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.
)
88 eqid 2193 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
8986, 87, 88ovmpog 6053 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  T  /\  <. (
( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )  -> 
( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
9068, 72, 84, 89syl3anc 1249 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
9166, 90eqtr3id 2240 . . . . . . . . . . . . . . 15  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
9291, 84eqeltrd 2270 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )  e.  (
( ZZ>= `  C )  X.  S ) )
9365, 92eqeltrd 2270 . . . . . . . . . . . . 13  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( 1st `  ( R `
 k ) )  =  ( G `  k ) )  /\  z  e.  ( ( ZZ>=
`  C )  X.  S ) )  -> 
( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  ( ( ZZ>= `  C
)  X.  S ) )
9493ralrimiva 2567 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  A. z  e.  ( ( ZZ>= `  C
)  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  z )  e.  ( ( ZZ>= `  C
)  X.  S ) )
95 uzid 9606 . . . . . . . . . . . . . . 15  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
9622, 95syl 14 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
97 opelxpi 4691 . . . . . . . . . . . . . 14  |-  ( ( C  e.  ( ZZ>= `  C )  /\  A  e.  S )  ->  <. C ,  A >.  e.  ( (
ZZ>= `  C )  X.  S ) )
9896, 23, 97syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  -> 
<. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
9998ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  <. C ,  A >.  e.  ( (
ZZ>= `  C )  X.  S ) )
100 frecsuc 6460 . . . . . . . . . . . 12  |-  ( ( A. z  e.  ( ( ZZ>= `  C )  X.  S ) ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S )  /\  <. C ,  A >.  e.  ( ( ZZ>= `  C )  X.  S )  /\  k  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  k
) ) )
10194, 99, 41, 100syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  k
) ) )
10226fveq1i 5555 . . . . . . . . . . 11  |-  ( R `
 suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  suc  k )
10326fveq1i 5555 . . . . . . . . . . . 12  |-  ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  k
)
104103fveq2i 5557 . . . . . . . . . . 11  |-  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  k
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  k
) )
105101, 102, 1043eqtr4g 2251 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( R `
 k ) ) )
106 1st2nd2 6228 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( R `  k )  =  <. ( 1st `  ( R `
 k ) ) ,  ( 2nd `  ( R `  k )
) >. )
10757, 106syl 14 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( R `  k )  =  <. ( 1st `  ( R `  k )
) ,  ( 2nd `  ( R `  k
) ) >. )
108107fveq2d 5558 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. ) )
109105, 108eqtrd 2226 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( 1st `  ( R `  k ) ) ,  ( 2nd `  ( R `  k )
) >. ) )
110 simpr 110 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( 1st `  ( R `  k ) )  =  ( G `  k
) )
111110opeq1d 3810 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  <. ( 1st `  ( R `  k ) ) ,  ( 2nd `  ( R `  k )
) >.  =  <. ( G `  k ) ,  ( 2nd `  ( R `  k )
) >. )
112111fveq2d 5558 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. )  =  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 k ) ,  ( 2nd `  ( R `  k )
) >. ) )
113109, 112eqtrd 2226 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( G `  k ) ,  ( 2nd `  ( R `  k )
) >. ) )
114 df-ov 5921 . . . . . . . . 9  |-  ( ( G `  k ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  k )
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 k ) ,  ( 2nd `  ( R `  k )
) >. )
11554ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  S  C_  T )
116115, 59sseldd 3180 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( 2nd `  ( R `  k ) )  e.  T )
117 opelxpi 4691 . . . . . . . . . . 11  |-  ( ( ( ( G `  k )  +  1 )  e.  ( ZZ>= `  C )  /\  (
( G `  k
) F ( 2nd `  ( R `  k
) ) )  e.  S )  ->  <. (
( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >.  e.  ( ( ZZ>= `  C )  X.  S ) )
11844, 60, 117syl2anc 411 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  <. (
( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >.  e.  ( ( ZZ>= `  C )  X.  S ) )
119 oveq1 5925 . . . . . . . . . . . 12  |-  ( x  =  ( G `  k )  ->  (
x  +  1 )  =  ( ( G `
 k )  +  1 ) )
120119, 47opeq12d 3812 . . . . . . . . . . 11  |-  ( x  =  ( G `  k )  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( ( G `  k
)  +  1 ) ,  ( ( G `
 k ) F y ) >. )
12145opeq2d 3811 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  <. ( ( G `  k )  +  1 ) ,  ( ( G `  k ) F y ) >.  =  <. ( ( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >. )
122120, 121, 88ovmpog 6053 . . . . . . . . . 10  |-  ( ( ( G `  k
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  k ) )  e.  T  /\  <. (
( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >.  e.  ( ( ZZ>= `  C )  X.  S ) )  -> 
( ( G `  k ) ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  k )
) )  =  <. ( ( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >. )
12342, 116, 118, 122syl3anc 1249 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  (
( G `  k
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >. )
124114, 123eqtr3id 2240 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 k ) ,  ( 2nd `  ( R `  k )
) >. )  =  <. ( ( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >. )
125113, 124eqtrd 2226 . . . . . . 7  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( R `  suc  k )  =  <. ( ( G `
 k )  +  1 ) ,  ( ( G `  k
) F ( 2nd `  ( R `  k
) ) ) >.
)
126125fveq2d 5558 . . . . . 6  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( 1st `  ( R `  suc  k ) )  =  ( 1st `  <. ( ( G `  k
)  +  1 ) ,  ( ( G `
 k ) F ( 2nd `  ( R `  k )
) ) >. )
)
12722ad2antlr 489 . . . . . . 7  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  C  e.  ZZ )
128127, 34, 41frec2uzsucd 10472 . . . . . 6  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( G `  suc  k )  =  ( ( G `
 k )  +  1 ) )
12962, 126, 1283eqtr4d 2236 . . . . 5  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( 1st `  ( R `  k ) )  =  ( G `  k
) )  ->  ( 1st `  ( R `  suc  k ) )  =  ( G `  suc  k ) )
130129exp31 364 . . . 4  |-  ( k  e.  om  ->  ( ph  ->  ( ( 1st `  ( R `  k
) )  =  ( G `  k )  ->  ( 1st `  ( R `  suc  k ) )  =  ( G `
 suc  k )
) ) )
131130a2d 26 . . 3  |-  ( k  e.  om  ->  (
( ph  ->  ( 1st `  ( R `  k
) )  =  ( G `  k ) )  ->  ( ph  ->  ( 1st `  ( R `  suc  k ) )  =  ( G `
 suc  k )
) ) )
1326, 11, 16, 21, 36, 131finds 4632 . 2  |-  ( N  e.  om  ->  ( ph  ->  ( 1st `  ( R `  N )
)  =  ( G `
 N ) ) )
1331, 132mpcom 36 1  |-  ( ph  ->  ( 1st `  ( R `  N )
)  =  ( G `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   (/)c0 3446   <.cop 3621    |-> cmpt 4090   suc csuc 4396   omcom 4622    X. cxp 4657   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192  freccfrec 6443   1c1 7873    + caddc 7875   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  frecuzrdgdomlem  10488  frecuzrdgfunlem  10490  frecuzrdgsuctlem  10494
  Copyright terms: Public domain W3C validator