ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axrnegex Unicode version

Theorem axrnegex 7946
Description: Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7988. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrnegex  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Distinct variable group:    x, A

Proof of Theorem axrnegex
StepHypRef Expression
1 elreal2 7897 . . . . 5  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
21simplbi 274 . . . 4  |-  ( A  e.  RR  ->  ( 1st `  A )  e. 
R. )
3 m1r 7819 . . . 4  |-  -1R  e.  R.
4 mulclsr 7821 . . . 4  |-  ( ( ( 1st `  A
)  e.  R.  /\  -1R  e.  R. )  -> 
( ( 1st `  A
)  .R  -1R )  e.  R. )
52, 3, 4sylancl 413 . . 3  |-  ( A  e.  RR  ->  (
( 1st `  A
)  .R  -1R )  e.  R. )
6 opelreal 7894 . . 3  |-  ( <.
( ( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR  <->  ( ( 1st `  A
)  .R  -1R )  e.  R. )
75, 6sylibr 134 . 2  |-  ( A  e.  RR  ->  <. (
( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR )
81simprbi 275 . . . 4  |-  ( A  e.  RR  ->  A  =  <. ( 1st `  A
) ,  0R >. )
98oveq1d 5937 . . 3  |-  ( A  e.  RR  ->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  (
<. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. ) )
10 addresr 7904 . . . 4  |-  ( ( ( 1st `  A
)  e.  R.  /\  ( ( 1st `  A
)  .R  -1R )  e.  R. )  ->  ( <. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  <. ( ( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >. )
112, 5, 10syl2anc 411 . . 3  |-  ( A  e.  RR  ->  ( <. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  <. ( ( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >. )
12 pn0sr 7838 . . . . . 6  |-  ( ( 1st `  A )  e.  R.  ->  (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) )  =  0R )
1312opeq1d 3814 . . . . 5  |-  ( ( 1st `  A )  e.  R.  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  <. 0R ,  0R >. )
14 df-0 7886 . . . . 5  |-  0  =  <. 0R ,  0R >.
1513, 14eqtr4di 2247 . . . 4  |-  ( ( 1st `  A )  e.  R.  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  0 )
162, 15syl 14 . . 3  |-  ( A  e.  RR  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  0 )
179, 11, 163eqtrd 2233 . 2  |-  ( A  e.  RR  ->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  0 )
18 oveq2 5930 . . . 4  |-  ( x  =  <. ( ( 1st `  A )  .R  -1R ) ,  0R >.  ->  ( A  +  x )  =  ( A  +  <. ( ( 1st `  A
)  .R  -1R ) ,  0R >. ) )
1918eqeq1d 2205 . . 3  |-  ( x  =  <. ( ( 1st `  A )  .R  -1R ) ,  0R >.  ->  (
( A  +  x
)  =  0  <->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  0 ) )
2019rspcev 2868 . 2  |-  ( (
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR  /\  ( A  +  <. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  0 )  ->  E. x  e.  RR  ( A  +  x )  =  0 )
217, 17, 20syl2anc 411 1  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   E.wrex 2476   <.cop 3625   ` cfv 5258  (class class class)co 5922   1stc1st 6196   R.cnr 7364   0Rc0r 7365   -1Rcm1r 7367    +R cplr 7368    .R cmr 7369   RRcr 7878   0cc0 7879    + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-enr 7793  df-nr 7794  df-plr 7795  df-mr 7796  df-0r 7798  df-1r 7799  df-m1r 7800  df-c 7885  df-0 7886  df-r 7889  df-add 7890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator