ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axrnegex Unicode version

Theorem axrnegex 7820
Description: Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7862. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrnegex  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Distinct variable group:    x, A

Proof of Theorem axrnegex
StepHypRef Expression
1 elreal2 7771 . . . . 5  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
21simplbi 272 . . . 4  |-  ( A  e.  RR  ->  ( 1st `  A )  e. 
R. )
3 m1r 7693 . . . 4  |-  -1R  e.  R.
4 mulclsr 7695 . . . 4  |-  ( ( ( 1st `  A
)  e.  R.  /\  -1R  e.  R. )  -> 
( ( 1st `  A
)  .R  -1R )  e.  R. )
52, 3, 4sylancl 410 . . 3  |-  ( A  e.  RR  ->  (
( 1st `  A
)  .R  -1R )  e.  R. )
6 opelreal 7768 . . 3  |-  ( <.
( ( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR  <->  ( ( 1st `  A
)  .R  -1R )  e.  R. )
75, 6sylibr 133 . 2  |-  ( A  e.  RR  ->  <. (
( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR )
81simprbi 273 . . . 4  |-  ( A  e.  RR  ->  A  =  <. ( 1st `  A
) ,  0R >. )
98oveq1d 5857 . . 3  |-  ( A  e.  RR  ->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  (
<. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. ) )
10 addresr 7778 . . . 4  |-  ( ( ( 1st `  A
)  e.  R.  /\  ( ( 1st `  A
)  .R  -1R )  e.  R. )  ->  ( <. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  <. ( ( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >. )
112, 5, 10syl2anc 409 . . 3  |-  ( A  e.  RR  ->  ( <. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  <. ( ( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >. )
12 pn0sr 7712 . . . . . 6  |-  ( ( 1st `  A )  e.  R.  ->  (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) )  =  0R )
1312opeq1d 3764 . . . . 5  |-  ( ( 1st `  A )  e.  R.  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  <. 0R ,  0R >. )
14 df-0 7760 . . . . 5  |-  0  =  <. 0R ,  0R >.
1513, 14eqtr4di 2217 . . . 4  |-  ( ( 1st `  A )  e.  R.  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  0 )
162, 15syl 14 . . 3  |-  ( A  e.  RR  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  0 )
179, 11, 163eqtrd 2202 . 2  |-  ( A  e.  RR  ->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  0 )
18 oveq2 5850 . . . 4  |-  ( x  =  <. ( ( 1st `  A )  .R  -1R ) ,  0R >.  ->  ( A  +  x )  =  ( A  +  <. ( ( 1st `  A
)  .R  -1R ) ,  0R >. ) )
1918eqeq1d 2174 . . 3  |-  ( x  =  <. ( ( 1st `  A )  .R  -1R ) ,  0R >.  ->  (
( A  +  x
)  =  0  <->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  0 ) )
2019rspcev 2830 . 2  |-  ( (
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR  /\  ( A  +  <. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  0 )  ->  E. x  e.  RR  ( A  +  x )  =  0 )
217, 17, 20syl2anc 409 1  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   E.wrex 2445   <.cop 3579   ` cfv 5188  (class class class)co 5842   1stc1st 6106   R.cnr 7238   0Rc0r 7239   -1Rcm1r 7241    +R cplr 7242    .R cmr 7243   RRcr 7752   0cc0 7753    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-0r 7672  df-1r 7673  df-m1r 7674  df-c 7759  df-0 7760  df-r 7763  df-add 7764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator