ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axrnegex Unicode version

Theorem axrnegex 7564
Description: Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7604. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrnegex  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Distinct variable group:    x, A

Proof of Theorem axrnegex
StepHypRef Expression
1 elreal2 7518 . . . . 5  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
21simplbi 270 . . . 4  |-  ( A  e.  RR  ->  ( 1st `  A )  e. 
R. )
3 m1r 7448 . . . 4  |-  -1R  e.  R.
4 mulclsr 7450 . . . 4  |-  ( ( ( 1st `  A
)  e.  R.  /\  -1R  e.  R. )  -> 
( ( 1st `  A
)  .R  -1R )  e.  R. )
52, 3, 4sylancl 407 . . 3  |-  ( A  e.  RR  ->  (
( 1st `  A
)  .R  -1R )  e.  R. )
6 opelreal 7515 . . 3  |-  ( <.
( ( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR  <->  ( ( 1st `  A
)  .R  -1R )  e.  R. )
75, 6sylibr 133 . 2  |-  ( A  e.  RR  ->  <. (
( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR )
81simprbi 271 . . . 4  |-  ( A  e.  RR  ->  A  =  <. ( 1st `  A
) ,  0R >. )
98oveq1d 5721 . . 3  |-  ( A  e.  RR  ->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  (
<. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. ) )
10 addresr 7524 . . . 4  |-  ( ( ( 1st `  A
)  e.  R.  /\  ( ( 1st `  A
)  .R  -1R )  e.  R. )  ->  ( <. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  <. ( ( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >. )
112, 5, 10syl2anc 406 . . 3  |-  ( A  e.  RR  ->  ( <. ( 1st `  A
) ,  0R >.  + 
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  <. ( ( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >. )
12 pn0sr 7467 . . . . . 6  |-  ( ( 1st `  A )  e.  R.  ->  (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) )  =  0R )
1312opeq1d 3658 . . . . 5  |-  ( ( 1st `  A )  e.  R.  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  <. 0R ,  0R >. )
14 df-0 7507 . . . . 5  |-  0  =  <. 0R ,  0R >.
1513, 14syl6eqr 2150 . . . 4  |-  ( ( 1st `  A )  e.  R.  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  0 )
162, 15syl 14 . . 3  |-  ( A  e.  RR  ->  <. (
( 1st `  A
)  +R  ( ( 1st `  A )  .R  -1R ) ) ,  0R >.  =  0 )
179, 11, 163eqtrd 2136 . 2  |-  ( A  e.  RR  ->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  0 )
18 oveq2 5714 . . . 4  |-  ( x  =  <. ( ( 1st `  A )  .R  -1R ) ,  0R >.  ->  ( A  +  x )  =  ( A  +  <. ( ( 1st `  A
)  .R  -1R ) ,  0R >. ) )
1918eqeq1d 2108 . . 3  |-  ( x  =  <. ( ( 1st `  A )  .R  -1R ) ,  0R >.  ->  (
( A  +  x
)  =  0  <->  ( A  +  <. ( ( 1st `  A )  .R  -1R ) ,  0R >. )  =  0 ) )
2019rspcev 2744 . 2  |-  ( (
<. ( ( 1st `  A
)  .R  -1R ) ,  0R >.  e.  RR  /\  ( A  +  <. ( ( 1st `  A
)  .R  -1R ) ,  0R >. )  =  0 )  ->  E. x  e.  RR  ( A  +  x )  =  0 )
217, 17, 20syl2anc 406 1  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    e. wcel 1448   E.wrex 2376   <.cop 3477   ` cfv 5059  (class class class)co 5706   1stc1st 5967   R.cnr 7006   0Rc0r 7007   -1Rcm1r 7009    +R cplr 7010    .R cmr 7011   RRcr 7499   0cc0 7500    + caddc 7503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-i1p 7176  df-iplp 7177  df-imp 7178  df-enr 7422  df-nr 7423  df-plr 7424  df-mr 7425  df-0r 7427  df-1r 7428  df-m1r 7429  df-c 7506  df-0 7507  df-r 7510  df-add 7511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator