| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divmuleqap | Unicode version | ||
| Description: Cross-multiply in an equality of ratios. (Contributed by Jim Kingdon, 26-Feb-2020.) |
| Ref | Expression |
|---|---|
| divmuleqap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divclap 8821 |
. . . . 5
| |
| 2 | 1 | 3expb 1228 |
. . . 4
|
| 3 | 2 | ad2ant2r 509 |
. . 3
|
| 4 | divclap 8821 |
. . . . 5
| |
| 5 | 4 | 3expb 1228 |
. . . 4
|
| 6 | 5 | ad2ant2l 508 |
. . 3
|
| 7 | mulcl 8122 |
. . . . . 6
| |
| 8 | 7 | ad2ant2r 509 |
. . . . 5
|
| 9 | mulap0 8797 |
. . . . 5
| |
| 10 | 8, 9 | jca 306 |
. . . 4
|
| 11 | 10 | adantl 277 |
. . 3
|
| 12 | mulcanap2 8809 |
. . 3
| |
| 13 | 3, 6, 11, 12 | syl3anc 1271 |
. 2
|
| 14 | simprll 537 |
. . . . 5
| |
| 15 | simprrl 539 |
. . . . 5
| |
| 16 | 3, 14, 15 | mulassd 8166 |
. . . 4
|
| 17 | divcanap1 8824 |
. . . . . . 7
| |
| 18 | 17 | 3expb 1228 |
. . . . . 6
|
| 19 | 18 | ad2ant2r 509 |
. . . . 5
|
| 20 | 19 | oveq1d 6015 |
. . . 4
|
| 21 | 16, 20 | eqtr3d 2264 |
. . 3
|
| 22 | 14, 15 | mulcomd 8164 |
. . . . 5
|
| 23 | 22 | oveq2d 6016 |
. . . 4
|
| 24 | 6, 15, 14 | mulassd 8166 |
. . . 4
|
| 25 | divcanap1 8824 |
. . . . . . 7
| |
| 26 | 25 | 3expb 1228 |
. . . . . 6
|
| 27 | 26 | ad2ant2l 508 |
. . . . 5
|
| 28 | 27 | oveq1d 6015 |
. . . 4
|
| 29 | 23, 24, 28 | 3eqtr2d 2268 |
. . 3
|
| 30 | 21, 29 | eqeq12d 2244 |
. 2
|
| 31 | 13, 30 | bitr3d 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 |
| This theorem is referenced by: divmuleqapd 8976 qtri3or 10455 |
| Copyright terms: Public domain | W3C validator |