ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdivdivap Unicode version

Theorem divdivdivap 8630
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divdivdivap  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  B )  / 
( C  /  D
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )

Proof of Theorem divdivdivap
StepHypRef Expression
1 simprrl 534 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D  e.  CC )
2 simprll 532 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C  e.  CC )
3 simprlr 533 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C #  0 )
4 divclap 8595 . . . . . . 7  |-  ( ( D  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( D  /  C )  e.  CC )
51, 2, 3, 4syl3anc 1233 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  /  C )  e.  CC )
6 simpll 524 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  A  e.  CC )
7 simplrl 530 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B  e.  CC )
8 simplrr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B #  0 )
9 divclap 8595 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
106, 7, 8, 9syl3anc 1233 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  /  B )  e.  CC )
115, 10mulcomd 7941 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  /  C )  x.  ( A  /  B
) )  =  ( ( A  /  B
)  x.  ( D  /  C ) ) )
12 simplr 525 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  e.  CC  /\  B #  0 ) )
13 simprl 526 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  e.  CC  /\  C #  0 ) )
14 divmuldivap 8629 . . . . . 6  |-  ( ( ( A  e.  CC  /\  D  e.  CC )  /\  ( ( B  e.  CC  /\  B #  0 )  /\  ( C  e.  CC  /\  C #  0 ) ) )  ->  ( ( A  /  B )  x.  ( D  /  C
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
156, 1, 12, 13, 14syl22anc 1234 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  B )  x.  ( D  /  C
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
1611, 15eqtrd 2203 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  /  C )  x.  ( A  /  B
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
1716oveq2d 5869 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( ( C  /  D )  x.  ( ( A  x.  D )  / 
( B  x.  C
) ) ) )
18 simprr 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  e.  CC  /\  D #  0 ) )
19 divmuldivap 8629 . . . . . . 7  |-  ( ( ( C  e.  CC  /\  D  e.  CC )  /\  ( ( D  e.  CC  /\  D #  0 )  /\  ( C  e.  CC  /\  C #  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  ( ( C  x.  D
)  /  ( D  x.  C ) ) )
202, 1, 18, 13, 19syl22anc 1234 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  ( ( C  x.  D
)  /  ( D  x.  C ) ) )
212, 1mulcomd 7941 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2221oveq1d 5868 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  / 
( D  x.  C
) )  =  ( ( D  x.  C
)  /  ( D  x.  C ) ) )
231, 2mulcld 7940 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  x.  C )  e.  CC )
24 simprrr 535 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D #  0 )
251, 2, 24, 3mulap0d 8576 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  x.  C ) #  0 )
26 dividap 8618 . . . . . . . 8  |-  ( ( ( D  x.  C
)  e.  CC  /\  ( D  x.  C
) #  0 )  -> 
( ( D  x.  C )  /  ( D  x.  C )
)  =  1 )
2723, 25, 26syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  x.  C )  / 
( D  x.  C
) )  =  1 )
2822, 27eqtrd 2203 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  / 
( D  x.  C
) )  =  1 )
2920, 28eqtrd 2203 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( D  /  C
) )  =  1 )
3029oveq1d 5868 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B
) )  =  ( 1  x.  ( A  /  B ) ) )
31 divclap 8595 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( C  /  D )  e.  CC )
322, 1, 24, 31syl3anc 1233 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  /  D )  e.  CC )
3332, 5, 10mulassd 7943 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( C  /  D )  x.  ( D  /  C ) )  x.  ( A  /  B
) )  =  ( ( C  /  D
)  x.  ( ( D  /  C )  x.  ( A  /  B ) ) ) )
3410mulid2d 7938 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( 1  x.  ( A  /  B
) )  =  ( A  /  B ) )
3530, 33, 343eqtr3d 2211 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( ( D  /  C )  x.  ( A  /  B ) ) )  =  ( A  /  B ) )
3617, 35eqtr3d 2205 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) )
376, 1mulcld 7940 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  e.  CC )
387, 2mulcld 7940 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  e.  CC )
39 mulap0 8572 . . . . 5  |-  ( ( ( B  e.  CC  /\  B #  0 )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B  x.  C ) #  0 )
4039ad2ant2lr 507 . . . 4  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C ) #  0 )
41 divclap 8595 . . . 4  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( B  x.  C
) #  0 )  -> 
( ( A  x.  D )  /  ( B  x.  C )
)  e.  CC )
4237, 38, 40, 41syl3anc 1233 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( B  x.  C
) )  e.  CC )
43 divap0 8601 . . . 4  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  /  D ) #  0 )
4443adantl 275 . . 3  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  /  D ) #  0 )
45 divmulap 8592 . . 3  |-  ( ( ( A  /  B
)  e.  CC  /\  ( ( A  x.  D )  /  ( B  x.  C )
)  e.  CC  /\  ( ( C  /  D )  e.  CC  /\  ( C  /  D
) #  0 ) )  ->  ( ( ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  /  ( B  x.  C )
)  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4610, 42, 32, 44, 45syl112anc 1237 . 2  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  /  B )  /  ( C  /  D ) )  =  ( ( A  x.  D )  /  ( B  x.  C )
)  <->  ( ( C  /  D )  x.  ( ( A  x.  D )  /  ( B  x.  C )
) )  =  ( A  /  B ) ) )
4736, 46mpbird 166 1  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  B )  / 
( C  /  D
) )  =  ( ( A  x.  D
)  /  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    x. cmul 7779   # cap 8500    / cdiv 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590
This theorem is referenced by:  recdivap  8635  divcanap7  8638  divdivap1  8640  divdivap2  8641  divdivdivapi  8692  qreccl  9601  pcadd  12293
  Copyright terms: Public domain W3C validator