ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ring1eq0 Unicode version

Theorem ring1eq0 13895
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element  { 0 }. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b  |-  B  =  ( Base `  R
)
ring1eq0.u  |-  .1.  =  ( 1r `  R )
ring1eq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ring1eq0  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  .1.  =  .0.  )
21oveq1d 5977 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) X ) )
31oveq1d 5977 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) Y ) )
4 simpl1 1003 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  R  e.  Ring )
5 simpl2 1004 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  e.  B )
6 ring1eq0.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 eqid 2206 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
8 ring1eq0.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
96, 7, 8ringlz 13890 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( .r `  R
) X )  =  .0.  )
104, 5, 9syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  .0.  )
11 simpl3 1005 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  Y  e.  B )
126, 7, 8ringlz 13890 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  ( .r `  R
) Y )  =  .0.  )
134, 11, 12syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) Y )  =  .0.  )
1410, 13eqtr4d 2242 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) Y ) )
153, 14eqtr4d 2242 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) X ) )
162, 15eqtr4d 2242 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .1.  ( .r `  R
) Y ) )
17 ring1eq0.u . . . . 5  |-  .1.  =  ( 1r `  R )
186, 7, 17ringlidm 13870 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  ( .r `  R
) X )  =  X )
194, 5, 18syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  X )
206, 7, 17ringlidm 13870 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .1.  ( .r `  R
) Y )  =  Y )
214, 11, 20syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  Y )
2216, 19, 213eqtr3d 2247 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  =  Y )
2322ex 115 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   ` cfv 5285  (class class class)co 5962   Basecbs 12917   .rcmulr 12995   0gc0g 13173   1rcur 13806   Ringcrg 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-mgp 13768  df-ur 13807  df-ring 13845
This theorem is referenced by:  isnzr2  14031  ringelnzr  14034  01eq0ring  14036
  Copyright terms: Public domain W3C validator