ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ring1eq0 Unicode version

Theorem ring1eq0 13017
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element  { 0 }. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b  |-  B  =  ( Base `  R
)
ring1eq0.u  |-  .1.  =  ( 1r `  R )
ring1eq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ring1eq0  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  .1.  =  .0.  )
21oveq1d 5880 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) X ) )
31oveq1d 5880 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) Y ) )
4 simpl1 1000 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  R  e.  Ring )
5 simpl2 1001 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  e.  B )
6 ring1eq0.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 eqid 2175 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
8 ring1eq0.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
96, 7, 8ringlz 13014 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( .r `  R
) X )  =  .0.  )
104, 5, 9syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  .0.  )
11 simpl3 1002 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  Y  e.  B )
126, 7, 8ringlz 13014 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  ( .r `  R
) Y )  =  .0.  )
134, 11, 12syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) Y )  =  .0.  )
1410, 13eqtr4d 2211 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) Y ) )
153, 14eqtr4d 2211 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) X ) )
162, 15eqtr4d 2211 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .1.  ( .r `  R
) Y ) )
17 ring1eq0.u . . . . 5  |-  .1.  =  ( 1r `  R )
186, 7, 17ringlidm 12999 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  ( .r `  R
) X )  =  X )
194, 5, 18syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  X )
206, 7, 17ringlidm 12999 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .1.  ( .r `  R
) Y )  =  Y )
214, 11, 20syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  Y )
2216, 19, 213eqtr3d 2216 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  =  Y )
2322ex 115 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2146   ` cfv 5208  (class class class)co 5865   Basecbs 12427   .rcmulr 12492   0gc0g 12625   1rcur 12935   Ringcrg 12972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-ndx 12430  df-slot 12431  df-base 12433  df-sets 12434  df-plusg 12504  df-mulr 12505  df-0g 12627  df-mgm 12639  df-sgrp 12672  df-mnd 12682  df-grp 12740  df-minusg 12741  df-mgp 12926  df-ur 12936  df-ring 12974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator