ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ring1eq0 Unicode version

Theorem ring1eq0 13225
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element  { 0 }. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b  |-  B  =  ( Base `  R
)
ring1eq0.u  |-  .1.  =  ( 1r `  R )
ring1eq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ring1eq0  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  .1.  =  .0.  )
21oveq1d 5890 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) X ) )
31oveq1d 5890 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) Y ) )
4 simpl1 1000 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  R  e.  Ring )
5 simpl2 1001 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  e.  B )
6 ring1eq0.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 eqid 2177 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
8 ring1eq0.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
96, 7, 8ringlz 13222 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( .r `  R
) X )  =  .0.  )
104, 5, 9syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  .0.  )
11 simpl3 1002 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  Y  e.  B )
126, 7, 8ringlz 13222 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  ( .r `  R
) Y )  =  .0.  )
134, 11, 12syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) Y )  =  .0.  )
1410, 13eqtr4d 2213 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) Y ) )
153, 14eqtr4d 2213 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) X ) )
162, 15eqtr4d 2213 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .1.  ( .r `  R
) Y ) )
17 ring1eq0.u . . . . 5  |-  .1.  =  ( 1r `  R )
186, 7, 17ringlidm 13206 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  ( .r `  R
) X )  =  X )
194, 5, 18syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  X )
206, 7, 17ringlidm 13206 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .1.  ( .r `  R
) Y )  =  Y )
214, 11, 20syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  Y )
2216, 19, 213eqtr3d 2218 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  =  Y )
2322ex 115 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   .rcmulr 12537   0gc0g 12705   1rcur 13142   Ringcrg 13179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-mgp 13131  df-ur 13143  df-ring 13181
This theorem is referenced by:  ringelnzr  13328  01eq0ring  13330
  Copyright terms: Public domain W3C validator