ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ring1eq0 Unicode version

Theorem ring1eq0 13604
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element  { 0 }. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b  |-  B  =  ( Base `  R
)
ring1eq0.u  |-  .1.  =  ( 1r `  R )
ring1eq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ring1eq0  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  .1.  =  .0.  )
21oveq1d 5937 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) X ) )
31oveq1d 5937 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) Y ) )
4 simpl1 1002 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  R  e.  Ring )
5 simpl2 1003 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  e.  B )
6 ring1eq0.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 eqid 2196 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
8 ring1eq0.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
96, 7, 8ringlz 13599 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( .r `  R
) X )  =  .0.  )
104, 5, 9syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  .0.  )
11 simpl3 1004 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  Y  e.  B )
126, 7, 8ringlz 13599 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  ( .r `  R
) Y )  =  .0.  )
134, 11, 12syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) Y )  =  .0.  )
1410, 13eqtr4d 2232 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) Y ) )
153, 14eqtr4d 2232 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) X ) )
162, 15eqtr4d 2232 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .1.  ( .r `  R
) Y ) )
17 ring1eq0.u . . . . 5  |-  .1.  =  ( 1r `  R )
186, 7, 17ringlidm 13579 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  ( .r `  R
) X )  =  X )
194, 5, 18syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  X )
206, 7, 17ringlidm 13579 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .1.  ( .r `  R
) Y )  =  Y )
214, 11, 20syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  Y )
2216, 19, 213eqtr3d 2237 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  =  Y )
2322ex 115 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756   0gc0g 12927   1rcur 13515   Ringcrg 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mgp 13477  df-ur 13516  df-ring 13554
This theorem is referenced by:  isnzr2  13740  ringelnzr  13743  01eq0ring  13745
  Copyright terms: Public domain W3C validator