ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ring1eq0 Unicode version

Theorem ring1eq0 14006
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element  { 0 }. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b  |-  B  =  ( Base `  R
)
ring1eq0.u  |-  .1.  =  ( 1r `  R )
ring1eq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
ring1eq0  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  .1.  =  .0.  )
21oveq1d 6015 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) X ) )
31oveq1d 6015 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) Y ) )
4 simpl1 1024 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  R  e.  Ring )
5 simpl2 1025 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  e.  B )
6 ring1eq0.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 eqid 2229 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
8 ring1eq0.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
96, 7, 8ringlz 14001 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( .r `  R
) X )  =  .0.  )
104, 5, 9syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  .0.  )
11 simpl3 1026 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  Y  e.  B )
126, 7, 8ringlz 14001 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  ( .r `  R
) Y )  =  .0.  )
134, 11, 12syl2anc 411 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) Y )  =  .0.  )
1410, 13eqtr4d 2265 . . . . 5  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .0.  ( .r
`  R ) X )  =  (  .0.  ( .r `  R
) Y ) )
153, 14eqtr4d 2265 . . . 4  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  (  .0.  ( .r `  R
) X ) )
162, 15eqtr4d 2265 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  (  .1.  ( .r `  R
) Y ) )
17 ring1eq0.u . . . . 5  |-  .1.  =  ( 1r `  R )
186, 7, 17ringlidm 13981 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  ( .r `  R
) X )  =  X )
194, 5, 18syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) X )  =  X )
206, 7, 17ringlidm 13981 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .1.  ( .r `  R
) Y )  =  Y )
214, 11, 20syl2anc 411 . . 3  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  (  .1.  ( .r
`  R ) Y )  =  Y )
2216, 19, 213eqtr3d 2270 . 2  |-  ( ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  /\  .1.  =  .0.  )  ->  X  =  Y )
2322ex 115 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  (  .1.  =  .0.  ->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   .rcmulr 13106   0gc0g 13284   1rcur 13917   Ringcrg 13954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mgp 13879  df-ur 13918  df-ring 13956
This theorem is referenced by:  isnzr2  14142  ringelnzr  14145  01eq0ring  14147
  Copyright terms: Public domain W3C validator