| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringlidm | Unicode version | ||
| Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| rngidm.b |
|
| rngidm.t |
|
| rngidm.u |
|
| Ref | Expression |
|---|---|
| ringlidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidm.b |
. . 3
| |
| 2 | rngidm.t |
. . 3
| |
| 3 | rngidm.u |
. . 3
| |
| 4 | 1, 2, 3 | ringidmlem 13588 |
. 2
|
| 5 | 4 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-3 9052 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-plusg 12778 df-mulr 12779 df-0g 12939 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-mgp 13487 df-ur 13526 df-ring 13564 |
| This theorem is referenced by: ringo2times 13594 ringidss 13595 ringcom 13597 ring1eq0 13614 ringinvnzdiv 13616 ringnegl 13617 ringressid 13629 imasring 13630 opprring 13645 dvdsrid 13666 unitmulcl 13679 unitgrp 13682 1rinv 13694 dvreq1 13708 ringinvdv 13711 subrginv 13803 issubrg2 13807 unitrrg 13833 sralmod 14016 mulgrhm 14175 |
| Copyright terms: Public domain | W3C validator |