| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ring1eq0 | GIF version | ||
| Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| ring1eq0.b | ⊢ 𝐵 = (Base‘𝑅) |
| ring1eq0.u | ⊢ 1 = (1r‘𝑅) |
| ring1eq0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ring1eq0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 1 = 0 ) | |
| 2 | 1 | oveq1d 5966 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑋)) |
| 3 | 1 | oveq1d 5966 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑌)) |
| 4 | simpl1 1003 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑅 ∈ Ring) | |
| 5 | simpl2 1004 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 ∈ 𝐵) | |
| 6 | ring1eq0.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | eqid 2206 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | ring1eq0.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 9 | 6, 7, 8 | ringlz 13849 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
| 10 | 4, 5, 9 | syl2anc 411 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
| 11 | simpl3 1005 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑌 ∈ 𝐵) | |
| 12 | 6, 7, 8 | ringlz 13849 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑌) = 0 ) |
| 13 | 4, 11, 12 | syl2anc 411 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑌) = 0 ) |
| 14 | 10, 13 | eqtr4d 2242 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑌)) |
| 15 | 3, 14 | eqtr4d 2242 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑋)) |
| 16 | 2, 15 | eqtr4d 2242 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 1 (.r‘𝑅)𝑌)) |
| 17 | ring1eq0.u | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 18 | 6, 7, 17 | ringlidm 13829 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑋) = 𝑋) |
| 19 | 4, 5, 18 | syl2anc 411 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = 𝑋) |
| 20 | 6, 7, 17 | ringlidm 13829 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 21 | 4, 11, 20 | syl2anc 411 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
| 22 | 16, 19, 21 | 3eqtr3d 2247 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 = 𝑌) |
| 23 | 22 | ex 115 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 .rcmulr 12954 0gc0g 13132 1rcur 13765 Ringcrg 13802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-mgp 13727 df-ur 13766 df-ring 13804 |
| This theorem is referenced by: isnzr2 13990 ringelnzr 13993 01eq0ring 13995 |
| Copyright terms: Public domain | W3C validator |