| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ring1eq0 | GIF version | ||
| Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.) | 
| Ref | Expression | 
|---|---|
| ring1eq0.b | ⊢ 𝐵 = (Base‘𝑅) | 
| ring1eq0.u | ⊢ 1 = (1r‘𝑅) | 
| ring1eq0.z | ⊢ 0 = (0g‘𝑅) | 
| Ref | Expression | 
|---|---|
| ring1eq0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 1 = 0 ) | |
| 2 | 1 | oveq1d 5937 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑋)) | 
| 3 | 1 | oveq1d 5937 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑌)) | 
| 4 | simpl1 1002 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑅 ∈ Ring) | |
| 5 | simpl2 1003 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 ∈ 𝐵) | |
| 6 | ring1eq0.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | eqid 2196 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | ring1eq0.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 9 | 6, 7, 8 | ringlz 13599 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑋) = 0 ) | 
| 10 | 4, 5, 9 | syl2anc 411 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = 0 ) | 
| 11 | simpl3 1004 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑌 ∈ 𝐵) | |
| 12 | 6, 7, 8 | ringlz 13599 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑌) = 0 ) | 
| 13 | 4, 11, 12 | syl2anc 411 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑌) = 0 ) | 
| 14 | 10, 13 | eqtr4d 2232 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑌)) | 
| 15 | 3, 14 | eqtr4d 2232 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑋)) | 
| 16 | 2, 15 | eqtr4d 2232 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 1 (.r‘𝑅)𝑌)) | 
| 17 | ring1eq0.u | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 18 | 6, 7, 17 | ringlidm 13579 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑋) = 𝑋) | 
| 19 | 4, 5, 18 | syl2anc 411 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = 𝑋) | 
| 20 | 6, 7, 17 | ringlidm 13579 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑌) = 𝑌) | 
| 21 | 4, 11, 20 | syl2anc 411 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = 𝑌) | 
| 22 | 16, 19, 21 | 3eqtr3d 2237 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 = 𝑌) | 
| 23 | 22 | ex 115 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 .rcmulr 12756 0gc0g 12927 1rcur 13515 Ringcrg 13552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-mgp 13477 df-ur 13516 df-ring 13554 | 
| This theorem is referenced by: isnzr2 13740 ringelnzr 13743 01eq0ring 13745 | 
| Copyright terms: Public domain | W3C validator |