![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ring1eq0 | GIF version |
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
ring1eq0.b | ⊢ 𝐵 = (Base‘𝑅) |
ring1eq0.u | ⊢ 1 = (1r‘𝑅) |
ring1eq0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ring1eq0 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 1 = 0 ) | |
2 | 1 | oveq1d 5887 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑋)) |
3 | 1 | oveq1d 5887 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑌)) |
4 | simpl1 1000 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑅 ∈ Ring) | |
5 | simpl2 1001 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 ∈ 𝐵) | |
6 | ring1eq0.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
7 | eqid 2177 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
8 | ring1eq0.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
9 | 6, 7, 8 | ringlz 13153 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
10 | 4, 5, 9 | syl2anc 411 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = 0 ) |
11 | simpl3 1002 | . . . . . . 7 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑌 ∈ 𝐵) | |
12 | 6, 7, 8 | ringlz 13153 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 0 (.r‘𝑅)𝑌) = 0 ) |
13 | 4, 11, 12 | syl2anc 411 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑌) = 0 ) |
14 | 10, 13 | eqtr4d 2213 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 0 (.r‘𝑅)𝑋) = ( 0 (.r‘𝑅)𝑌)) |
15 | 3, 14 | eqtr4d 2213 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = ( 0 (.r‘𝑅)𝑋)) |
16 | 2, 15 | eqtr4d 2213 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = ( 1 (.r‘𝑅)𝑌)) |
17 | ring1eq0.u | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
18 | 6, 7, 17 | ringlidm 13137 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑋) = 𝑋) |
19 | 4, 5, 18 | syl2anc 411 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑋) = 𝑋) |
20 | 6, 7, 17 | ringlidm 13137 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
21 | 4, 11, 20 | syl2anc 411 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → ( 1 (.r‘𝑅)𝑌) = 𝑌) |
22 | 16, 19, 21 | 3eqtr3d 2218 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 1 = 0 ) → 𝑋 = 𝑌) |
23 | 22 | ex 115 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ‘cfv 5215 (class class class)co 5872 Basecbs 12454 .rcmulr 12529 0gc0g 12693 1rcur 13073 Ringcrg 13110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7899 ax-resscn 7900 ax-1cn 7901 ax-1re 7902 ax-icn 7903 ax-addcl 7904 ax-addrcl 7905 ax-mulcl 7906 ax-addcom 7908 ax-addass 7910 ax-i2m1 7913 ax-0lt1 7914 ax-0id 7916 ax-rnegex 7917 ax-pre-ltirr 7920 ax-pre-ltadd 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 df-fv 5223 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-pnf 7990 df-mnf 7991 df-ltxr 7993 df-inn 8916 df-2 8974 df-3 8975 df-ndx 12457 df-slot 12458 df-base 12460 df-sets 12461 df-plusg 12541 df-mulr 12542 df-0g 12695 df-mgm 12707 df-sgrp 12740 df-mnd 12750 df-grp 12812 df-minusg 12813 df-mgp 13062 df-ur 13074 df-ring 13112 |
This theorem is referenced by: ringelnzr 13259 01eq0ring 13261 |
Copyright terms: Public domain | W3C validator |