ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ring1eq0 GIF version

Theorem ring1eq0 13977
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b 𝐵 = (Base‘𝑅)
ring1eq0.u 1 = (1r𝑅)
ring1eq0.z 0 = (0g𝑅)
Assertion
Ref Expression
ring1eq0 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 1 = 0 )
21oveq1d 5989 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = ( 0 (.r𝑅)𝑋))
31oveq1d 5989 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = ( 0 (.r𝑅)𝑌))
4 simpl1 1005 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑅 ∈ Ring)
5 simpl2 1006 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑋𝐵)
6 ring1eq0.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 eqid 2209 . . . . . . . 8 (.r𝑅) = (.r𝑅)
8 ring1eq0.z . . . . . . . 8 0 = (0g𝑅)
96, 7, 8ringlz 13972 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (.r𝑅)𝑋) = 0 )
104, 5, 9syl2anc 411 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑋) = 0 )
11 simpl3 1007 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑌𝐵)
126, 7, 8ringlz 13972 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 (.r𝑅)𝑌) = 0 )
134, 11, 12syl2anc 411 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑌) = 0 )
1410, 13eqtr4d 2245 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑋) = ( 0 (.r𝑅)𝑌))
153, 14eqtr4d 2245 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = ( 0 (.r𝑅)𝑋))
162, 15eqtr4d 2245 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = ( 1 (.r𝑅)𝑌))
17 ring1eq0.u . . . . 5 1 = (1r𝑅)
186, 7, 17ringlidm 13952 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 (.r𝑅)𝑋) = 𝑋)
194, 5, 18syl2anc 411 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = 𝑋)
206, 7, 17ringlidm 13952 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 (.r𝑅)𝑌) = 𝑌)
214, 11, 20syl2anc 411 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = 𝑌)
2216, 19, 213eqtr3d 2250 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑋 = 𝑌)
2322ex 115 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  Basecbs 12998  .rcmulr 13077  0gc0g 13255  1rcur 13888  Ringcrg 13925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-mgp 13850  df-ur 13889  df-ring 13927
This theorem is referenced by:  isnzr2  14113  ringelnzr  14116  01eq0ring  14118
  Copyright terms: Public domain W3C validator