ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvnzdiv GIF version

Theorem ringinvnzdiv 13549
Description: In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
ringinvnzdiv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringinvnzdiv (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnzdiv
StepHypRef Expression
1 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2 ringinvnzdiv.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.y . . . . . . . . 9 (𝜑𝑌𝐵)
4 ringinvnzdiv.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 ringinvnzdiv.t . . . . . . . . . 10 · = (.r𝑅)
6 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
74, 5, 6ringlidm 13522 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 · 𝑌) = 𝑌)
82, 3, 7syl2anc 411 . . . . . . . 8 (𝜑 → ( 1 · 𝑌) = 𝑌)
98eqcomd 2199 . . . . . . 7 (𝜑𝑌 = ( 1 · 𝑌))
109ad3antrrr 492 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌))
11 oveq1 5926 . . . . . . . . . 10 ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1211eqcoms 2196 . . . . . . . . 9 ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1312adantl 277 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
142adantr 276 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → 𝑅 ∈ Ring)
15 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎𝐵)
16 ringinvnzdiv.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
1716adantr 276 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑋𝐵)
183adantr 276 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑌𝐵)
1915, 17, 183jca 1179 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (𝑎𝐵𝑋𝐵𝑌𝐵))
2014, 19jca 306 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
2120adantr 276 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
224, 5ringass 13515 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2321, 22syl 14 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2413, 23eqtrd 2226 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2524adantr 276 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
26 oveq2 5927 . . . . . . 7 ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 ))
27 ringinvnzdiv.z . . . . . . . . . 10 0 = (0g𝑅)
284, 5, 27ringrz 13543 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
292, 28sylan 283 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
3029adantr 276 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 )
3126, 30sylan9eqr 2248 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 )
3210, 25, 313eqtrd 2230 . . . . 5 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 )
3332exp31 364 . . . 4 ((𝜑𝑎𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
3433rexlimdva 2611 . . 3 (𝜑 → (∃𝑎𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
351, 34mpd 13 . 2 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
36 oveq2 5927 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
374, 5, 27ringrz 13543 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
382, 16, 37syl2anc 411 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
3936, 38sylan9eqr 2248 . . 3 ((𝜑𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )
4039ex 115 . 2 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
4135, 40impbid 129 1 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473  cfv 5255  (class class class)co 5919  Basecbs 12621  .rcmulr 12699  0gc0g 12870  1rcur 13458  Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-mgp 13420  df-ur 13459  df-ring 13497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator