Proof of Theorem ringinvnzdiv
| Step | Hyp | Ref
| Expression |
| 1 | | ringinvnzdiv.a |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) |
| 2 | | ringinvnzdiv.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 3 | | ringinvnzdiv.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 4 | | ringinvnzdiv.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
| 5 | | ringinvnzdiv.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑅) |
| 6 | | ringinvnzdiv.u |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑅) |
| 7 | 4, 5, 6 | ringlidm 13579 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵) → ( 1 · 𝑌) = 𝑌) |
| 8 | 2, 3, 7 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ( 1 · 𝑌) = 𝑌) |
| 9 | 8 | eqcomd 2202 |
. . . . . . 7
⊢ (𝜑 → 𝑌 = ( 1 · 𝑌)) |
| 10 | 9 | ad3antrrr 492 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌)) |
| 11 | | oveq1 5929 |
. . . . . . . . . 10
⊢ ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
| 12 | 11 | eqcoms 2199 |
. . . . . . . . 9
⊢ ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
| 13 | 12 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌)) |
| 14 | 2 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 15 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 16 | | ringinvnzdiv.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 17 | 16 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 18 | 3 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 19 | 15, 17, 18 | 3jca 1179 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) |
| 20 | 14, 19 | jca 306 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
| 21 | 20 | adantr 276 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵))) |
| 22 | 4, 5 | ringass 13572 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑎 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 23 | 21, 22 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 24 | 13, 23 | eqtrd 2229 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 25 | 24 | adantr 276 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌))) |
| 26 | | oveq2 5930 |
. . . . . . 7
⊢ ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 )) |
| 27 | | ringinvnzdiv.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑅) |
| 28 | 4, 5, 27 | ringrz 13600 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 29 | 2, 28 | sylan 283 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝑎 · 0 ) = 0 ) |
| 30 | 29 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 ) |
| 31 | 26, 30 | sylan9eqr 2251 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 ) |
| 32 | 10, 25, 31 | 3eqtrd 2233 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 ) |
| 33 | 32 | exp31 364 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 34 | 33 | rexlimdva 2614 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 ))) |
| 35 | 1, 34 | mpd 13 |
. 2
⊢ (𝜑 → ((𝑋 · 𝑌) = 0 → 𝑌 = 0 )) |
| 36 | | oveq2 5930 |
. . . 4
⊢ (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 )) |
| 37 | 4, 5, 27 | ringrz 13600 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 38 | 2, 16, 37 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
| 39 | 36, 38 | sylan9eqr 2251 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑋 · 𝑌) = 0 ) |
| 40 | 39 | ex 115 |
. 2
⊢ (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 )) |
| 41 | 35, 40 | impbid 129 |
1
⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |