ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id Unicode version

Theorem seq3id 10494
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for  .+) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
iseqid.1  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
iseqid.2  |-  ( ph  ->  Z  e.  S )
iseqid.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid.4  |-  ( ph  ->  ( F `  N
)  e.  S )
iseqid.5  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
iseqid.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, Z, y    ph, x, y

Proof of Theorem seq3id
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iseqid.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 9526 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
4 simpr 110 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  N )
)
51adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
6 uztrn 9533 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
74, 5, 6syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  M )
)
8 iseqid.f . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
97, 8syldan 282 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  ( F `  x )  e.  S
)
10 iseqid.cl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
113, 9, 10seq3-1 10446 . . . 4  |-  ( ph  ->  (  seq N ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
12 seqeq1 10434 . . . . . 6  |-  ( N  =  M  ->  seq N (  .+  ,  F )  =  seq M (  .+  ,  F ) )
1312fveq1d 5513 . . . . 5  |-  ( N  =  M  ->  (  seq N (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
) )
1413eqeq1d 2186 . . . 4  |-  ( N  =  M  ->  (
(  seq N (  .+  ,  F ) `  N
)  =  ( F `
 N )  <->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
1511, 14syl5ibcom 155 . . 3  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  .+  ,  F
) `  N )  =  ( F `  N ) ) )
16 eluzel2 9522 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
171, 16syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
19 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
208adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2110adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2218, 19, 20, 21seq3m1 10454 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
23 oveq2 5877 . . . . . . . . . 10  |-  ( x  =  Z  ->  ( Z  .+  x )  =  ( Z  .+  Z
) )
24 id 19 . . . . . . . . . 10  |-  ( x  =  Z  ->  x  =  Z )
2523, 24eqeq12d 2192 . . . . . . . . 9  |-  ( x  =  Z  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  Z )  =  Z ) )
26 iseqid.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
2726ralrimiva 2550 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  x )
28 iseqid.2 . . . . . . . . 9  |-  ( ph  ->  Z  e.  S )
2925, 27, 28rspcdva 2846 . . . . . . . 8  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
3029adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  Z )  =  Z )
31 eluzp1m1 9540 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
3217, 31sylan 283 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
33 iseqid.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3433adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3528adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  Z  e.  S )
3630, 32, 34, 35, 20, 21seq3id3 10493 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  =  Z )
3736oveq1d 5884 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) )  =  ( Z  .+  ( F `  N ) ) )
38 oveq2 5877 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  N )
) )
39 id 19 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  x  =  ( F `  N ) )
4038, 39eqeq12d 2192 . . . . . 6  |-  ( x  =  ( F `  N )  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) ) )
4127adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( Z  .+  x )  =  x )
42 iseqid.4 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  S )
4342adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  N )  e.  S
)
4440, 41, 43rspcdva 2846 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) )
4522, 37, 443eqtrd 2214 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) )
4645ex 115 . . 3  |-  ( ph  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
47 uzp1 9550 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
481, 47syl 14 . . 3  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
4915, 46, 48mpjaod 718 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
50 eqidd 2178 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
511, 49, 8, 9, 10, 50seq3feq2 10456 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455    |` cres 4625   ` cfv 5212  (class class class)co 5869   1c1 7803    + caddc 7805    - cmin 8118   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129  df-seqfrec 10432
This theorem is referenced by:  seq3coll  10806  sumrbdclem  11369  prodrbdclem  11563
  Copyright terms: Public domain W3C validator