ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id Unicode version

Theorem seq3id 10464
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for  .+) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
iseqid.1  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
iseqid.2  |-  ( ph  ->  Z  e.  S )
iseqid.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid.4  |-  ( ph  ->  ( F `  N
)  e.  S )
iseqid.5  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
iseqid.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, Z, y    ph, x, y

Proof of Theorem seq3id
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iseqid.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 9496 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
4 simpr 109 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  N )
)
51adantr 274 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
6 uztrn 9503 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
74, 5, 6syl2anc 409 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  M )
)
8 iseqid.f . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
97, 8syldan 280 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  ( F `  x )  e.  S
)
10 iseqid.cl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
113, 9, 10seq3-1 10416 . . . 4  |-  ( ph  ->  (  seq N ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
12 seqeq1 10404 . . . . . 6  |-  ( N  =  M  ->  seq N (  .+  ,  F )  =  seq M (  .+  ,  F ) )
1312fveq1d 5498 . . . . 5  |-  ( N  =  M  ->  (  seq N (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
) )
1413eqeq1d 2179 . . . 4  |-  ( N  =  M  ->  (
(  seq N (  .+  ,  F ) `  N
)  =  ( F `
 N )  <->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
1511, 14syl5ibcom 154 . . 3  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  .+  ,  F
) `  N )  =  ( F `  N ) ) )
16 eluzel2 9492 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
171, 16syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1817adantr 274 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
19 simpr 109 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
208adantlr 474 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2110adantlr 474 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2218, 19, 20, 21seq3m1 10424 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
23 oveq2 5861 . . . . . . . . . 10  |-  ( x  =  Z  ->  ( Z  .+  x )  =  ( Z  .+  Z
) )
24 id 19 . . . . . . . . . 10  |-  ( x  =  Z  ->  x  =  Z )
2523, 24eqeq12d 2185 . . . . . . . . 9  |-  ( x  =  Z  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  Z )  =  Z ) )
26 iseqid.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
2726ralrimiva 2543 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  x )
28 iseqid.2 . . . . . . . . 9  |-  ( ph  ->  Z  e.  S )
2925, 27, 28rspcdva 2839 . . . . . . . 8  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
3029adantr 274 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  Z )  =  Z )
31 eluzp1m1 9510 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
3217, 31sylan 281 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
33 iseqid.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3433adantlr 474 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3528adantr 274 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  Z  e.  S )
3630, 32, 34, 35, 20, 21seq3id3 10463 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  =  Z )
3736oveq1d 5868 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) )  =  ( Z  .+  ( F `  N ) ) )
38 oveq2 5861 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  N )
) )
39 id 19 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  x  =  ( F `  N ) )
4038, 39eqeq12d 2185 . . . . . 6  |-  ( x  =  ( F `  N )  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) ) )
4127adantr 274 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( Z  .+  x )  =  x )
42 iseqid.4 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  S )
4342adantr 274 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  N )  e.  S
)
4440, 41, 43rspcdva 2839 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) )
4522, 37, 443eqtrd 2207 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) )
4645ex 114 . . 3  |-  ( ph  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
47 uzp1 9520 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
481, 47syl 14 . . 3  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
4915, 46, 48mpjaod 713 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
50 eqidd 2171 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
511, 49, 8, 9, 10, 50seq3feq2 10426 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448    |` cres 4613   ` cfv 5198  (class class class)co 5853   1c1 7775    + caddc 7777    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  seq3coll  10777  sumrbdclem  11340  prodrbdclem  11534
  Copyright terms: Public domain W3C validator