ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id Unicode version

Theorem seq3id 10634
Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for  .+) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
iseqid.1  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
iseqid.2  |-  ( ph  ->  Z  e.  S )
iseqid.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid.4  |-  ( ph  ->  ( F `  N
)  e.  S )
iseqid.5  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
iseqid.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3id  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, Z, y    ph, x, y

Proof of Theorem seq3id
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iseqid.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 9627 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
4 simpr 110 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  N )
)
51adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
6 uztrn 9635 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
74, 5, 6syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  M )
)
8 iseqid.f . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
97, 8syldan 282 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  ( F `  x )  e.  S
)
10 iseqid.cl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
113, 9, 10seq3-1 10571 . . . 4  |-  ( ph  ->  (  seq N ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
12 seqeq1 10559 . . . . . 6  |-  ( N  =  M  ->  seq N (  .+  ,  F )  =  seq M (  .+  ,  F ) )
1312fveq1d 5563 . . . . 5  |-  ( N  =  M  ->  (  seq N (  .+  ,  F ) `  N
)  =  (  seq M (  .+  ,  F ) `  N
) )
1413eqeq1d 2205 . . . 4  |-  ( N  =  M  ->  (
(  seq N (  .+  ,  F ) `  N
)  =  ( F `
 N )  <->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
1511, 14syl5ibcom 155 . . 3  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  .+  ,  F
) `  N )  =  ( F `  N ) ) )
16 eluzel2 9623 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
171, 16syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1817adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
19 simpr 110 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
208adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2110adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2218, 19, 20, 21seq3m1 10582 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
23 oveq2 5933 . . . . . . . . . 10  |-  ( x  =  Z  ->  ( Z  .+  x )  =  ( Z  .+  Z
) )
24 id 19 . . . . . . . . . 10  |-  ( x  =  Z  ->  x  =  Z )
2523, 24eqeq12d 2211 . . . . . . . . 9  |-  ( x  =  Z  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  Z )  =  Z ) )
26 iseqid.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
2726ralrimiva 2570 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  x )
28 iseqid.2 . . . . . . . . 9  |-  ( ph  ->  Z  e.  S )
2925, 27, 28rspcdva 2873 . . . . . . . 8  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
3029adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  Z )  =  Z )
31 eluzp1m1 9642 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
3217, 31sylan 283 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
33 iseqid.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3433adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3528adantr 276 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  Z  e.  S )
3630, 32, 34, 35, 20, 21seq3id3 10633 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  =  Z )
3736oveq1d 5940 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ) `  ( N  -  1 ) )  .+  ( F `
 N ) )  =  ( Z  .+  ( F `  N ) ) )
38 oveq2 5933 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  N )
) )
39 id 19 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  x  =  ( F `  N ) )
4038, 39eqeq12d 2211 . . . . . 6  |-  ( x  =  ( F `  N )  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) ) )
4127adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( Z  .+  x )  =  x )
42 iseqid.4 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  S )
4342adantr 276 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  N )  e.  S
)
4440, 41, 43rspcdva 2873 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) )
4522, 37, 443eqtrd 2233 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) )
4645ex 115 . . 3  |-  ( ph  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ) `  N
)  =  ( F `
 N ) ) )
47 uzp1 9652 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
481, 47syl 14 . . 3  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
4915, 46, 48mpjaod 719 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  ( F `  N
) )
50 eqidd 2197 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
511, 49, 8, 9, 10, 50seq3feq2 10585 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F )  |`  ( ZZ>= `  N )
)  =  seq N
(  .+  ,  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475    |` cres 4666   ` cfv 5259  (class class class)co 5925   1c1 7897    + caddc 7899    - cmin 8214   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  seq3coll  10951  sumrbdclem  11559  prodrbdclem  11753
  Copyright terms: Public domain W3C validator