ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraipg Unicode version

Theorem sraipg 14239
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
srapart.ex  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
sraipg  |-  ( ph  ->  ( .r `  W
)  =  ( .i
`  A ) )

Proof of Theorem sraipg
StepHypRef Expression
1 srapart.ex . . . . 5  |-  ( ph  ->  W  e.  X )
2 scaslid 13018 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
32simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ph  ->  (Scalar `  ndx )  e.  NN )
5 basfn 12923 . . . . . . . 8  |-  Base  Fn  _V
61elexd 2785 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
7 funfvex 5595 . . . . . . . . 9  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
87funfni 5377 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
95, 6, 8sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  W
)  e.  _V )
10 srapart.s . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  W ) )
119, 10ssexd 4185 . . . . . 6  |-  ( ph  ->  S  e.  _V )
12 ressex 12930 . . . . . 6  |-  ( ( W  e.  X  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
131, 11, 12syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  S )  e.  _V )
14 setsex 12897 . . . . 5  |-  ( ( W  e.  X  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
151, 4, 13, 14syl3anc 1250 . . . 4  |-  ( ph  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
16 vscaslid 13028 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
1716simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
1817a1i 9 . . . 4  |-  ( ph  ->  ( .s `  ndx )  e.  NN )
19 mulrslid 12997 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2019slotex 12892 . . . . 5  |-  ( W  e.  X  ->  ( .r `  W )  e. 
_V )
211, 20syl 14 . . . 4  |-  ( ph  ->  ( .r `  W
)  e.  _V )
22 setsex 12897 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
2315, 18, 21, 22syl3anc 1250 . . 3  |-  ( ph  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
24 ipslid 13036 . . . 4  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
2524setsslid 12916 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( .r `  W )  =  ( .i `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
2623, 21, 25syl2anc 411 . 2  |-  ( ph  ->  ( .r `  W
)  =  ( .i
`  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
27 srapart.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
28 sraval 14232 . . . . 5  |-  ( ( W  e.  _V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
296, 10, 28syl2anc 411 . . . 4  |-  ( ph  ->  ( (subringAlg  `  W ) `
 S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
3027, 29eqtrd 2238 . . 3  |-  ( ph  ->  A  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
3130fveq2d 5582 . 2  |-  ( ph  ->  ( .i `  A
)  =  ( .i
`  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
3226, 31eqtr4d 2241 1  |-  ( ph  ->  ( .r `  W
)  =  ( .i
`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   <.cop 3636    Fn wfn 5267   ` cfv 5272  (class class class)co 5946   NNcn 9038   ndxcnx 12862   sSet csts 12863  Slot cslot 12864   Basecbs 12865   ↾s cress 12866   .rcmulr 12943  Scalarcsca 12945   .scvsca 12946   .icip 12947  subringAlg csra 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-mulr 12956  df-sca 12958  df-vsca 12959  df-ip 12960  df-sra 14230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator