ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraipg Unicode version

Theorem sraipg 14408
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
srapart.ex  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
sraipg  |-  ( ph  ->  ( .r `  W
)  =  ( .i
`  A ) )

Proof of Theorem sraipg
StepHypRef Expression
1 srapart.ex . . . . 5  |-  ( ph  ->  W  e.  X )
2 scaslid 13186 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
32simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ph  ->  (Scalar `  ndx )  e.  NN )
5 basfn 13091 . . . . . . . 8  |-  Base  Fn  _V
61elexd 2813 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
7 funfvex 5644 . . . . . . . . 9  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
87funfni 5423 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
95, 6, 8sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  W
)  e.  _V )
10 srapart.s . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  W ) )
119, 10ssexd 4224 . . . . . 6  |-  ( ph  ->  S  e.  _V )
12 ressex 13098 . . . . . 6  |-  ( ( W  e.  X  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
131, 11, 12syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  S )  e.  _V )
14 setsex 13064 . . . . 5  |-  ( ( W  e.  X  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
151, 4, 13, 14syl3anc 1271 . . . 4  |-  ( ph  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
16 vscaslid 13196 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
1716simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
1817a1i 9 . . . 4  |-  ( ph  ->  ( .s `  ndx )  e.  NN )
19 mulrslid 13165 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2019slotex 13059 . . . . 5  |-  ( W  e.  X  ->  ( .r `  W )  e. 
_V )
211, 20syl 14 . . . 4  |-  ( ph  ->  ( .r `  W
)  e.  _V )
22 setsex 13064 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
2315, 18, 21, 22syl3anc 1271 . . 3  |-  ( ph  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
24 ipslid 13204 . . . 4  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
2524setsslid 13083 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( .r `  W )  =  ( .i `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
2623, 21, 25syl2anc 411 . 2  |-  ( ph  ->  ( .r `  W
)  =  ( .i
`  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
27 srapart.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
28 sraval 14401 . . . . 5  |-  ( ( W  e.  _V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
296, 10, 28syl2anc 411 . . . 4  |-  ( ph  ->  ( (subringAlg  `  W ) `
 S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
3027, 29eqtrd 2262 . . 3  |-  ( ph  ->  A  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
3130fveq2d 5631 . 2  |-  ( ph  ->  ( .i `  A
)  =  ( .i
`  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
3226, 31eqtr4d 2265 1  |-  ( ph  ->  ( .r `  W
)  =  ( .i
`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   <.cop 3669    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   NNcn 9110   ndxcnx 13029   sSet csts 13030  Slot cslot 13031   Basecbs 13032   ↾s cress 13033   .rcmulr 13111  Scalarcsca 13113   .scvsca 13114   .icip 13115  subringAlg csra 14397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-mulr 13124  df-sca 13126  df-vsca 13127  df-ip 13128  df-sra 14399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator