ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraipg GIF version

Theorem sraipg 13720
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
Assertion
Ref Expression
sraipg (𝜑 → (.r𝑊) = (·𝑖𝐴))

Proof of Theorem sraipg
StepHypRef Expression
1 srapart.ex . . . . 5 (𝜑𝑊𝑋)
2 scaslid 12629 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
32simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
43a1i 9 . . . . 5 (𝜑 → (Scalar‘ndx) ∈ ℕ)
5 basfn 12537 . . . . . . . 8 Base Fn V
61elexd 2764 . . . . . . . 8 (𝜑𝑊 ∈ V)
7 funfvex 5546 . . . . . . . . 9 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
87funfni 5330 . . . . . . . 8 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
95, 6, 8sylancr 414 . . . . . . 7 (𝜑 → (Base‘𝑊) ∈ V)
10 srapart.s . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
119, 10ssexd 4157 . . . . . 6 (𝜑𝑆 ∈ V)
12 ressex 12542 . . . . . 6 ((𝑊𝑋𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
131, 11, 12syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝑆) ∈ V)
14 setsex 12511 . . . . 5 ((𝑊𝑋 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
151, 4, 13, 14syl3anc 1248 . . . 4 (𝜑 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
16 vscaslid 12639 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1716simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
1817a1i 9 . . . 4 (𝜑 → ( ·𝑠 ‘ndx) ∈ ℕ)
19 mulrslid 12608 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2019slotex 12506 . . . . 5 (𝑊𝑋 → (.r𝑊) ∈ V)
211, 20syl 14 . . . 4 (𝜑 → (.r𝑊) ∈ V)
22 setsex 12511 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
2315, 18, 21, 22syl3anc 1248 . . 3 (𝜑 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
24 ipslid 12647 . . . 4 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
2524setsslid 12530 . . 3 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2623, 21, 25syl2anc 411 . 2 (𝜑 → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
27 srapart.a . . . 4 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
28 sraval 13713 . . . . 5 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
296, 10, 28syl2anc 411 . . . 4 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
3027, 29eqtrd 2221 . . 3 (𝜑𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
3130fveq2d 5533 . 2 (𝜑 → (·𝑖𝐴) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3226, 31eqtr4d 2224 1 (𝜑 → (.r𝑊) = (·𝑖𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2159  Vcvv 2751  wss 3143  cop 3609   Fn wfn 5225  cfv 5230  (class class class)co 5890  cn 8936  ndxcnx 12476   sSet csts 12477  Slot cslot 12478  Basecbs 12479  s cress 12480  .rcmulr 12555  Scalarcsca 12557   ·𝑠 cvsca 12558  ·𝑖cip 12559  subringAlg csra 13709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1re 7922  ax-addrcl 7925
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-7 9000  df-8 9001  df-ndx 12482  df-slot 12483  df-base 12485  df-sets 12486  df-iress 12487  df-mulr 12568  df-sca 12570  df-vsca 12571  df-ip 12572  df-sra 13711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator