ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraipg GIF version

Theorem sraipg 14408
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
Assertion
Ref Expression
sraipg (𝜑 → (.r𝑊) = (·𝑖𝐴))

Proof of Theorem sraipg
StepHypRef Expression
1 srapart.ex . . . . 5 (𝜑𝑊𝑋)
2 scaslid 13186 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
32simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
43a1i 9 . . . . 5 (𝜑 → (Scalar‘ndx) ∈ ℕ)
5 basfn 13091 . . . . . . . 8 Base Fn V
61elexd 2813 . . . . . . . 8 (𝜑𝑊 ∈ V)
7 funfvex 5644 . . . . . . . . 9 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
87funfni 5423 . . . . . . . 8 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
95, 6, 8sylancr 414 . . . . . . 7 (𝜑 → (Base‘𝑊) ∈ V)
10 srapart.s . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
119, 10ssexd 4224 . . . . . 6 (𝜑𝑆 ∈ V)
12 ressex 13098 . . . . . 6 ((𝑊𝑋𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
131, 11, 12syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝑆) ∈ V)
14 setsex 13064 . . . . 5 ((𝑊𝑋 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
151, 4, 13, 14syl3anc 1271 . . . 4 (𝜑 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
16 vscaslid 13196 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1716simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
1817a1i 9 . . . 4 (𝜑 → ( ·𝑠 ‘ndx) ∈ ℕ)
19 mulrslid 13165 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2019slotex 13059 . . . . 5 (𝑊𝑋 → (.r𝑊) ∈ V)
211, 20syl 14 . . . 4 (𝜑 → (.r𝑊) ∈ V)
22 setsex 13064 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
2315, 18, 21, 22syl3anc 1271 . . 3 (𝜑 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
24 ipslid 13204 . . . 4 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
2524setsslid 13083 . . 3 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2623, 21, 25syl2anc 411 . 2 (𝜑 → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
27 srapart.a . . . 4 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
28 sraval 14401 . . . . 5 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
296, 10, 28syl2anc 411 . . . 4 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
3027, 29eqtrd 2262 . . 3 (𝜑𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
3130fveq2d 5631 . 2 (𝜑 → (·𝑖𝐴) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3226, 31eqtr4d 2265 1 (𝜑 → (.r𝑊) = (·𝑖𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  cop 3669   Fn wfn 5313  cfv 5318  (class class class)co 6001  cn 9110  ndxcnx 13029   sSet csts 13030  Slot cslot 13031  Basecbs 13032  s cress 13033  .rcmulr 13111  Scalarcsca 13113   ·𝑠 cvsca 13114  ·𝑖cip 13115  subringAlg csra 14397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-mulr 13124  df-sca 13126  df-vsca 13127  df-ip 13128  df-sra 14399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator