Proof of Theorem sraipg
| Step | Hyp | Ref
 | Expression | 
| 1 |   | srapart.ex | 
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝑋) | 
| 2 |   | scaslid 12830 | 
. . . . . . 7
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) | 
| 3 | 2 | simpri 113 | 
. . . . . 6
⊢
(Scalar‘ndx) ∈ ℕ | 
| 4 | 3 | a1i 9 | 
. . . . 5
⊢ (𝜑 → (Scalar‘ndx) ∈
ℕ) | 
| 5 |   | basfn 12736 | 
. . . . . . . 8
⊢ Base Fn
V | 
| 6 | 1 | elexd 2776 | 
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ V) | 
| 7 |   | funfvex 5575 | 
. . . . . . . . 9
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) | 
| 8 | 7 | funfni 5358 | 
. . . . . . . 8
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) | 
| 9 | 5, 6, 8 | sylancr 414 | 
. . . . . . 7
⊢ (𝜑 → (Base‘𝑊) ∈ V) | 
| 10 |   | srapart.s | 
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | 
| 11 | 9, 10 | ssexd 4173 | 
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) | 
| 12 |   | ressex 12743 | 
. . . . . 6
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑆 ∈ V) → (𝑊 ↾s 𝑆) ∈ V) | 
| 13 | 1, 11, 12 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → (𝑊 ↾s 𝑆) ∈ V) | 
| 14 |   | setsex 12710 | 
. . . . 5
⊢ ((𝑊 ∈ 𝑋 ∧ (Scalar‘ndx) ∈ ℕ
∧ (𝑊
↾s 𝑆)
∈ V) → (𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V) | 
| 15 | 1, 4, 13, 14 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈
V) | 
| 16 |   | vscaslid 12840 | 
. . . . . 6
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) | 
| 17 | 16 | simpri 113 | 
. . . . 5
⊢ (
·𝑠 ‘ndx) ∈ ℕ | 
| 18 | 17 | a1i 9 | 
. . . 4
⊢ (𝜑 → (
·𝑠 ‘ndx) ∈
ℕ) | 
| 19 |   | mulrslid 12809 | 
. . . . . 6
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) | 
| 20 | 19 | slotex 12705 | 
. . . . 5
⊢ (𝑊 ∈ 𝑋 → (.r‘𝑊) ∈ V) | 
| 21 | 1, 20 | syl 14 | 
. . . 4
⊢ (𝜑 → (.r‘𝑊) ∈ V) | 
| 22 |   | setsex 12710 | 
. . . 4
⊢ (((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) ∈ V ∧ (
·𝑠 ‘ndx) ∈ ℕ ∧
(.r‘𝑊)
∈ V) → ((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈
V) | 
| 23 | 15, 18, 21, 22 | syl3anc 1249 | 
. . 3
⊢ (𝜑 → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈
V) | 
| 24 |   | ipslid 12848 | 
. . . 4
⊢
(·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) | 
| 25 | 24 | setsslid 12729 | 
. . 3
⊢ ((((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V ∧
(.r‘𝑊)
∈ V) → (.r‘𝑊) =
(·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) | 
| 26 | 23, 21, 25 | syl2anc 411 | 
. 2
⊢ (𝜑 → (.r‘𝑊) =
(·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) | 
| 27 |   | srapart.a | 
. . . 4
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | 
| 28 |   | sraval 13993 | 
. . . . 5
⊢ ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg
‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) | 
| 29 | 6, 10, 28 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) | 
| 30 | 27, 29 | eqtrd 2229 | 
. . 3
⊢ (𝜑 → 𝐴 = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) | 
| 31 | 30 | fveq2d 5562 | 
. 2
⊢ (𝜑 →
(·𝑖‘𝐴) =
(·𝑖‘(((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) | 
| 32 | 26, 31 | eqtr4d 2232 | 
1
⊢ (𝜑 → (.r‘𝑊) =
(·𝑖‘𝐴)) |