ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraipg GIF version

Theorem sraipg 14206
Description: The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
Assertion
Ref Expression
sraipg (𝜑 → (.r𝑊) = (·𝑖𝐴))

Proof of Theorem sraipg
StepHypRef Expression
1 srapart.ex . . . . 5 (𝜑𝑊𝑋)
2 scaslid 12985 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
32simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
43a1i 9 . . . . 5 (𝜑 → (Scalar‘ndx) ∈ ℕ)
5 basfn 12890 . . . . . . . 8 Base Fn V
61elexd 2785 . . . . . . . 8 (𝜑𝑊 ∈ V)
7 funfvex 5593 . . . . . . . . 9 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
87funfni 5376 . . . . . . . 8 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
95, 6, 8sylancr 414 . . . . . . 7 (𝜑 → (Base‘𝑊) ∈ V)
10 srapart.s . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑊))
119, 10ssexd 4184 . . . . . 6 (𝜑𝑆 ∈ V)
12 ressex 12897 . . . . . 6 ((𝑊𝑋𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
131, 11, 12syl2anc 411 . . . . 5 (𝜑 → (𝑊s 𝑆) ∈ V)
14 setsex 12864 . . . . 5 ((𝑊𝑋 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
151, 4, 13, 14syl3anc 1250 . . . 4 (𝜑 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
16 vscaslid 12995 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
1716simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
1817a1i 9 . . . 4 (𝜑 → ( ·𝑠 ‘ndx) ∈ ℕ)
19 mulrslid 12964 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
2019slotex 12859 . . . . 5 (𝑊𝑋 → (.r𝑊) ∈ V)
211, 20syl 14 . . . 4 (𝜑 → (.r𝑊) ∈ V)
22 setsex 12864 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
2315, 18, 21, 22syl3anc 1250 . . 3 (𝜑 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
24 ipslid 13003 . . . 4 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
2524setsslid 12883 . . 3 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (.r𝑊) ∈ V) → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
2623, 21, 25syl2anc 411 . 2 (𝜑 → (.r𝑊) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
27 srapart.a . . . 4 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
28 sraval 14199 . . . . 5 ((𝑊 ∈ V ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
296, 10, 28syl2anc 411 . . . 4 (𝜑 → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
3027, 29eqtrd 2238 . . 3 (𝜑𝐴 = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
3130fveq2d 5580 . 2 (𝜑 → (·𝑖𝐴) = (·𝑖‘(((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
3226, 31eqtr4d 2241 1 (𝜑 → (.r𝑊) = (·𝑖𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  Vcvv 2772  wss 3166  cop 3636   Fn wfn 5266  cfv 5271  (class class class)co 5944  cn 9036  ndxcnx 12829   sSet csts 12830  Slot cslot 12831  Basecbs 12832  s cress 12833  .rcmulr 12910  Scalarcsca 12912   ·𝑠 cvsca 12913  ·𝑖cip 12914  subringAlg csra 14195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-mulr 12923  df-sca 12925  df-vsca 12926  df-ip 12927  df-sra 14197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator