Step | Hyp | Ref
| Expression |
1 | | srapart.ex |
. . . . 5
β’ (π β π β π) |
2 | | scaslid 12614 |
. . . . . . 7
β’ (Scalar =
Slot (Scalarβndx) β§ (Scalarβndx) β
β) |
3 | 2 | simpri 113 |
. . . . . 6
β’
(Scalarβndx) β β |
4 | 3 | a1i 9 |
. . . . 5
β’ (π β (Scalarβndx) β
β) |
5 | | basfn 12523 |
. . . . . . . 8
β’ Base Fn
V |
6 | 1 | elexd 2752 |
. . . . . . . 8
β’ (π β π β V) |
7 | | funfvex 5534 |
. . . . . . . . 9
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
8 | 7 | funfni 5318 |
. . . . . . . 8
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
9 | 5, 6, 8 | sylancr 414 |
. . . . . . 7
β’ (π β (Baseβπ) β V) |
10 | | srapart.s |
. . . . . . 7
β’ (π β π β (Baseβπ)) |
11 | 9, 10 | ssexd 4145 |
. . . . . 6
β’ (π β π β V) |
12 | | ressex 12528 |
. . . . . 6
β’ ((π β π β§ π β V) β (π βΎs π) β V) |
13 | 1, 11, 12 | syl2anc 411 |
. . . . 5
β’ (π β (π βΎs π) β V) |
14 | | setsex 12497 |
. . . . 5
β’ ((π β π β§ (Scalarβndx) β β
β§ (π
βΎs π)
β V) β (π sSet
β¨(Scalarβndx), (π βΎs π)β©) β V) |
15 | 1, 4, 13, 14 | syl3anc 1238 |
. . . 4
β’ (π β (π sSet β¨(Scalarβndx), (π βΎs π)β©) β
V) |
16 | | vscaslid 12624 |
. . . . . 6
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
17 | 16 | simpri 113 |
. . . . 5
β’ (
Β·π βndx) β β |
18 | 17 | a1i 9 |
. . . 4
β’ (π β (
Β·π βndx) β
β) |
19 | | mulrslid 12593 |
. . . . . 6
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
20 | 19 | slotex 12492 |
. . . . 5
β’ (π β π β (.rβπ) β V) |
21 | 1, 20 | syl 14 |
. . . 4
β’ (π β (.rβπ) β V) |
22 | | setsex 12497 |
. . . 4
β’ (((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) β V β§ (
Β·π βndx) β β β§
(.rβπ)
β V) β ((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
23 | 15, 18, 21, 22 | syl3anc 1238 |
. . 3
β’ (π β ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
24 | | ipslid 12632 |
. . . 4
β’
(Β·π = Slot
(Β·πβndx) β§
(Β·πβndx) β
β) |
25 | 24 | setsslid 12516 |
. . 3
β’ ((((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β V β§
(.rβπ)
β V) β (.rβπ) =
(Β·πβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
26 | 23, 21, 25 | syl2anc 411 |
. 2
β’ (π β (.rβπ) =
(Β·πβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
27 | | srapart.a |
. . . 4
β’ (π β π΄ = ((subringAlg βπ)βπ)) |
28 | | sraval 13535 |
. . . . 5
β’ ((π β V β§ π β (Baseβπ)) β ((subringAlg
βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
29 | 6, 10, 28 | syl2anc 411 |
. . . 4
β’ (π β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
30 | 27, 29 | eqtrd 2210 |
. . 3
β’ (π β π΄ = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
31 | 30 | fveq2d 5521 |
. 2
β’ (π β
(Β·πβπ΄) =
(Β·πβ(((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
32 | 26, 31 | eqtr4d 2213 |
1
β’ (π β (.rβπ) =
(Β·πβπ΄)) |