ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sravscag Unicode version

Theorem sravscag 13632
Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
srapart.ex  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
sravscag  |-  ( ph  ->  ( .r `  W
)  =  ( .s
`  A ) )

Proof of Theorem sravscag
StepHypRef Expression
1 srapart.ex . . . . 5  |-  ( ph  ->  W  e.  X )
2 scaslid 12626 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
32simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ph  ->  (Scalar `  ndx )  e.  NN )
5 basfn 12534 . . . . . . . 8  |-  Base  Fn  _V
61elexd 2762 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
7 funfvex 5544 . . . . . . . . 9  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
87funfni 5328 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
95, 6, 8sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  W
)  e.  _V )
10 srapart.s . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  W ) )
119, 10ssexd 4155 . . . . . 6  |-  ( ph  ->  S  e.  _V )
12 ressex 12539 . . . . . 6  |-  ( ( W  e.  X  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
131, 11, 12syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  S )  e.  _V )
14 setsex 12508 . . . . 5  |-  ( ( W  e.  X  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
151, 4, 13, 14syl3anc 1248 . . . 4  |-  ( ph  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
16 vscaslid 12636 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
1716simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
1817a1i 9 . . . 4  |-  ( ph  ->  ( .s `  ndx )  e.  NN )
19 mulrslid 12605 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2019slotex 12503 . . . . 5  |-  ( W  e.  X  ->  ( .r `  W )  e. 
_V )
211, 20syl 14 . . . 4  |-  ( ph  ->  ( .r `  W
)  e.  _V )
22 setsex 12508 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
2315, 18, 21, 22syl3anc 1248 . . 3  |-  ( ph  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
24 slotsdifipndx 12648 . . . . 5  |-  ( ( .s `  ndx )  =/=  ( .i `  ndx )  /\  (Scalar `  ndx )  =/=  ( .i `  ndx ) )
2524simpli 111 . . . 4  |-  ( .s
`  ndx )  =/=  ( .i `  ndx )
26 ipslid 12644 . . . . 5  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
2726simpri 113 . . . 4  |-  ( .i
`  ndx )  e.  NN
2816, 25, 27setsslnid 12528 . . 3  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( .s `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)  =  ( .s
`  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
2923, 21, 28syl2anc 411 . 2  |-  ( ph  ->  ( .s `  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )  =  ( .s `  (
( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
3016setsslid 12527 . . 3  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  ( .r `  W )  =  ( .s `  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) ) )
3115, 21, 30syl2anc 411 . 2  |-  ( ph  ->  ( .r `  W
)  =  ( .s
`  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
) )
32 srapart.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
33 sraval 13626 . . . . 5  |-  ( ( W  e.  _V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
346, 10, 33syl2anc 411 . . . 4  |-  ( ph  ->  ( (subringAlg  `  W ) `
 S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
3532, 34eqtrd 2220 . . 3  |-  ( ph  ->  A  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
3635fveq2d 5531 . 2  |-  ( ph  ->  ( .s `  A
)  =  ( .s
`  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
3729, 31, 363eqtr4d 2230 1  |-  ( ph  ->  ( .r `  W
)  =  ( .s
`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158    =/= wne 2357   _Vcvv 2749    C_ wss 3141   <.cop 3607    Fn wfn 5223   ` cfv 5228  (class class class)co 5888   NNcn 8933   ndxcnx 12473   sSet csts 12474  Slot cslot 12475   Basecbs 12476   ↾s cress 12477   .rcmulr 12552  Scalarcsca 12554   .scvsca 12555   .icip 12556  subringAlg csra 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-5 8995  df-6 8996  df-7 8997  df-8 8998  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-iress 12484  df-mulr 12565  df-sca 12567  df-vsca 12568  df-ip 12569  df-sra 13624
This theorem is referenced by:  sralmod  13639  rlmvscag  13650
  Copyright terms: Public domain W3C validator