| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sravscag | Unicode version | ||
| Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
| Ref | Expression |
|---|---|
| srapart.a |
|
| srapart.s |
|
| srapart.ex |
|
| Ref | Expression |
|---|---|
| sravscag |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.ex |
. . . . 5
| |
| 2 | scaslid 12806 |
. . . . . . 7
| |
| 3 | 2 | simpri 113 |
. . . . . 6
|
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | basfn 12712 |
. . . . . . . 8
| |
| 6 | 1 | elexd 2776 |
. . . . . . . 8
|
| 7 | funfvex 5575 |
. . . . . . . . 9
| |
| 8 | 7 | funfni 5358 |
. . . . . . . 8
|
| 9 | 5, 6, 8 | sylancr 414 |
. . . . . . 7
|
| 10 | srapart.s |
. . . . . . 7
| |
| 11 | 9, 10 | ssexd 4173 |
. . . . . 6
|
| 12 | ressex 12719 |
. . . . . 6
| |
| 13 | 1, 11, 12 | syl2anc 411 |
. . . . 5
|
| 14 | setsex 12686 |
. . . . 5
| |
| 15 | 1, 4, 13, 14 | syl3anc 1249 |
. . . 4
|
| 16 | vscaslid 12816 |
. . . . . 6
| |
| 17 | 16 | simpri 113 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | mulrslid 12785 |
. . . . . 6
| |
| 20 | 19 | slotex 12681 |
. . . . 5
|
| 21 | 1, 20 | syl 14 |
. . . 4
|
| 22 | setsex 12686 |
. . . 4
| |
| 23 | 15, 18, 21, 22 | syl3anc 1249 |
. . 3
|
| 24 | slotsdifipndx 12828 |
. . . . 5
| |
| 25 | 24 | simpli 111 |
. . . 4
|
| 26 | ipslid 12824 |
. . . . 5
| |
| 27 | 26 | simpri 113 |
. . . 4
|
| 28 | 16, 25, 27 | setsslnid 12706 |
. . 3
|
| 29 | 23, 21, 28 | syl2anc 411 |
. 2
|
| 30 | 16 | setsslid 12705 |
. . 3
|
| 31 | 15, 21, 30 | syl2anc 411 |
. 2
|
| 32 | srapart.a |
. . . 4
| |
| 33 | sraval 13969 |
. . . . 5
| |
| 34 | 6, 10, 33 | syl2anc 411 |
. . . 4
|
| 35 | 32, 34 | eqtrd 2229 |
. . 3
|
| 36 | 35 | fveq2d 5562 |
. 2
|
| 37 | 29, 31, 36 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-addcom 7977 ax-addass 7979 ax-i2m1 7982 ax-0lt1 7983 ax-0id 7985 ax-rnegex 7986 ax-pre-ltirr 7989 ax-pre-lttrn 7991 ax-pre-ltadd 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8061 df-mnf 8062 df-ltxr 8064 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-5 9049 df-6 9050 df-7 9051 df-8 9052 df-ndx 12657 df-slot 12658 df-base 12660 df-sets 12661 df-iress 12662 df-mulr 12745 df-sca 12747 df-vsca 12748 df-ip 12749 df-sra 13967 |
| This theorem is referenced by: sralmod 13982 rlmvscag 13993 |
| Copyright terms: Public domain | W3C validator |