ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraring Unicode version

Theorem sraring 14326
Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.)
Hypotheses
Ref Expression
sraring.1  |-  A  =  ( (subringAlg  `  R ) `
 V )
sraring.2  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
sraring  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  A  e.  Ring )

Proof of Theorem sraring
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  R  e.  Ring )
2 sraring.2 . . . 4  |-  B  =  ( Base `  R
)
32a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  B  =  ( Base `  R
) )
4 sraring.1 . . . . . 6  |-  A  =  ( (subringAlg  `  R ) `
 V )
54a1i 9 . . . . 5  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  A  =  ( (subringAlg  `  R
) `  V )
)
6 id 19 . . . . . . 7  |-  ( V 
C_  B  ->  V  C_  B )
76, 2sseqtrdi 3249 . . . . . 6  |-  ( V 
C_  B  ->  V  C_  ( Base `  R
) )
87adantl 277 . . . . 5  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  V  C_  ( Base `  R
) )
95, 8, 1srabaseg 14316 . . . 4  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  ( Base `  R )  =  ( Base `  A
) )
102, 9eqtrid 2252 . . 3  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  B  =  ( Base `  A
) )
115, 8, 1sraaddgg 14317 . . . 4  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  ( +g  `  R )  =  ( +g  `  A
) )
1211oveqdr 5995 . . 3  |-  ( ( ( R  e.  Ring  /\  V  C_  B )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  R
) y )  =  ( x ( +g  `  A ) y ) )
135, 8, 1sramulrg 14318 . . . 4  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  ( .r `  R )  =  ( .r `  A
) )
1413oveqdr 5995 . . 3  |-  ( ( ( R  e.  Ring  /\  V  C_  B )  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( .r `  R ) y )  =  ( x ( .r `  A ) y ) )
153, 10, 12, 14ringpropd 13915 . 2  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  ( R  e.  Ring  <->  A  e.  Ring ) )
161, 15mpbid 147 1  |-  ( ( R  e.  Ring  /\  V  C_  B )  ->  A  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174   ` cfv 5290   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   Ringcrg 13873  subringAlg csra 14310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-ip 13042  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-mgp 13798  df-ring 13875  df-sra 14312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator