| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sraring | GIF version | ||
| Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| Ref | Expression |
|---|---|
| sraring.1 | ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) |
| sraring.2 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| sraring | ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝑅 ∈ Ring) | |
| 2 | sraring.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 4 | sraring.1 | . . . . . 6 ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) | |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉)) |
| 6 | id 19 | . . . . . . 7 ⊢ (𝑉 ⊆ 𝐵 → 𝑉 ⊆ 𝐵) | |
| 7 | 6, 2 | sseqtrdi 3243 | . . . . . 6 ⊢ (𝑉 ⊆ 𝐵 → 𝑉 ⊆ (Base‘𝑅)) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ (Base‘𝑅)) |
| 9 | 5, 8, 1 | srabaseg 14251 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝐴)) |
| 10 | 2, 9 | eqtrid 2251 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐵 = (Base‘𝐴)) |
| 11 | 5, 8, 1 | sraaddgg 14252 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (+g‘𝑅) = (+g‘𝐴)) |
| 12 | 11 | oveqdr 5982 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝐴)𝑦)) |
| 13 | 5, 8, 1 | sramulrg 14253 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (.r‘𝑅) = (.r‘𝐴)) |
| 14 | 13 | oveqdr 5982 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
| 15 | 3, 10, 12, 14 | ringpropd 13850 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (𝑅 ∈ Ring ↔ 𝐴 ∈ Ring)) |
| 16 | 1, 15 | mpbid 147 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⊆ wss 3168 ‘cfv 5277 Basecbs 12882 +gcplusg 12959 .rcmulr 12960 Ringcrg 13808 subringAlg csra 14245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-iress 12890 df-plusg 12972 df-mulr 12973 df-sca 12975 df-vsca 12976 df-ip 12977 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-mgp 13733 df-ring 13810 df-sra 14247 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |