![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sraring | GIF version |
Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
Ref | Expression |
---|---|
sraring.1 | ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) |
sraring.2 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
sraring | ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝑅 ∈ Ring) | |
2 | sraring.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐵 = (Base‘𝑅)) |
4 | sraring.1 | . . . . . 6 ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) | |
5 | 4 | a1i 9 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 = ((subringAlg ‘𝑅)‘𝑉)) |
6 | id 19 | . . . . . . 7 ⊢ (𝑉 ⊆ 𝐵 → 𝑉 ⊆ 𝐵) | |
7 | 6, 2 | sseqtrdi 3218 | . . . . . 6 ⊢ (𝑉 ⊆ 𝐵 → 𝑉 ⊆ (Base‘𝑅)) |
8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ (Base‘𝑅)) |
9 | 5, 8, 1 | srabaseg 13748 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (Base‘𝑅) = (Base‘𝐴)) |
10 | 2, 9 | eqtrid 2234 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐵 = (Base‘𝐴)) |
11 | 5, 8, 1 | sraaddgg 13749 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (+g‘𝑅) = (+g‘𝐴)) |
12 | 11 | oveqdr 5920 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝐴)𝑦)) |
13 | 5, 8, 1 | sramulrg 13750 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (.r‘𝑅) = (.r‘𝐴)) |
14 | 13 | oveqdr 5920 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝐴)𝑦)) |
15 | 3, 10, 12, 14 | ringpropd 13385 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → (𝑅 ∈ Ring ↔ 𝐴 ∈ Ring)) |
16 | 1, 15 | mpbid 147 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 ‘cfv 5232 Basecbs 12507 +gcplusg 12582 .rcmulr 12583 Ringcrg 13343 subringAlg csra 13742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-addcom 7936 ax-addass 7938 ax-i2m1 7941 ax-0lt1 7942 ax-0id 7944 ax-rnegex 7945 ax-pre-ltirr 7948 ax-pre-lttrn 7950 ax-pre-ltadd 7952 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-pnf 8019 df-mnf 8020 df-ltxr 8022 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-7 9008 df-8 9009 df-ndx 12510 df-slot 12511 df-base 12513 df-sets 12514 df-iress 12515 df-plusg 12595 df-mulr 12596 df-sca 12598 df-vsca 12599 df-ip 12600 df-0g 12756 df-mgm 12825 df-sgrp 12858 df-mnd 12871 df-grp 12941 df-mgp 13268 df-ring 13345 df-sra 13744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |