ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ubmelfzo Unicode version

Theorem ubmelfzo 10081
Description: If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelfzo  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  ( 0..^ N ) )

Proof of Theorem ubmelfzo
StepHypRef Expression
1 simp3 984 . . . 4  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  K  <_  N )
2 nnnn0 9080 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  NN0 )
3 nnnn0 9080 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
42, 3anim12i 336 . . . . . 6  |-  ( ( K  e.  NN  /\  N  e.  NN )  ->  ( K  e.  NN0  /\  N  e.  NN0 )
)
543adant3 1002 . . . . 5  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  ( K  e.  NN0  /\  N  e.  NN0 ) )
6 nn0sub 9216 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( K  <_  N  <->  ( N  -  K )  e.  NN0 ) )
75, 6syl 14 . . . 4  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  ( K  <_  N  <->  ( N  -  K )  e.  NN0 ) )
81, 7mpbid 146 . . 3  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  ( N  -  K )  e.  NN0 )
9 simp2 983 . . 3  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  N  e.  NN )
10 nngt0 8841 . . . . 5  |-  ( K  e.  NN  ->  0  <  K )
11103ad2ant1 1003 . . . 4  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  0  <  K )
12 nnre 8823 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  RR )
13 nnre 8823 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
1412, 13anim12i 336 . . . . . 6  |-  ( ( K  e.  NN  /\  N  e.  NN )  ->  ( K  e.  RR  /\  N  e.  RR ) )
15143adant3 1002 . . . . 5  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  ( K  e.  RR  /\  N  e.  RR ) )
16 ltsubpos 8312 . . . . 5  |-  ( ( K  e.  RR  /\  N  e.  RR )  ->  ( 0  <  K  <->  ( N  -  K )  <  N ) )
1715, 16syl 14 . . . 4  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  (
0  <  K  <->  ( N  -  K )  <  N
) )
1811, 17mpbid 146 . . 3  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  ( N  -  K )  <  N )
198, 9, 183jca 1162 . 2  |-  ( ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N )  ->  (
( N  -  K
)  e.  NN0  /\  N  e.  NN  /\  ( N  -  K )  <  N ) )
20 elfz1b 9974 . 2  |-  ( K  e.  ( 1 ... N )  <->  ( K  e.  NN  /\  N  e.  NN  /\  K  <_  N ) )
21 elfzo0 10063 . 2  |-  ( ( N  -  K )  e.  ( 0..^ N )  <->  ( ( N  -  K )  e. 
NN0  /\  N  e.  NN  /\  ( N  -  K )  <  N
) )
2219, 20, 213imtr4i 200 1  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  ( 0..^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 2128   class class class wbr 3965  (class class class)co 5818   RRcr 7714   0cc0 7715   1c1 7716    < clt 7895    <_ cle 7896    - cmin 8029   NNcn 8816   NN0cn0 9073   ...cfz 9894  ..^cfzo 10023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-inn 8817  df-n0 9074  df-z 9151  df-uz 9423  df-fz 9895  df-fzo 10024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator