![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ubmelfzo | GIF version |
Description: If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
ubmelfzo | ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 966 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
2 | nnnn0 8888 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
3 | nnnn0 8888 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | anim12i 334 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
5 | 4 | 3adant3 984 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
6 | nn0sub 9024 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) |
8 | 1, 7 | mpbid 146 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
9 | simp2 965 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ) | |
10 | nngt0 8655 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 0 < 𝐾) | |
11 | 10 | 3ad2ant1 985 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 0 < 𝐾) |
12 | nnre 8637 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
13 | nnre 8637 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
14 | 12, 13 | anim12i 334 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
15 | 14 | 3adant3 984 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
16 | ltsubpos 8135 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) |
18 | 11, 17 | mpbid 146 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) < 𝑁) |
19 | 8, 9, 18 | 3jca 1144 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) |
20 | elfz1b 9763 | . 2 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) | |
21 | elfzo0 9852 | . 2 ⊢ ((𝑁 − 𝐾) ∈ (0..^𝑁) ↔ ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) | |
22 | 19, 20, 21 | 3imtr4i 200 | 1 ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 ∈ wcel 1463 class class class wbr 3895 (class class class)co 5728 ℝcr 7546 0cc0 7547 1c1 7548 < clt 7724 ≤ cle 7725 − cmin 7856 ℕcn 8630 ℕ0cn0 8881 ...cfz 9683 ..^cfzo 9812 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-ltadd 7661 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-inn 8631 df-n0 8882 df-z 8959 df-uz 9229 df-fz 9684 df-fzo 9813 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |