ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ubmelfzo GIF version

Theorem ubmelfzo 10203
Description: If an integer in a 1 based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelfzo (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ (0..^𝑁))

Proof of Theorem ubmelfzo
StepHypRef Expression
1 simp3 999 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → 𝐾𝑁)
2 nnnn0 9186 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
3 nnnn0 9186 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
42, 3anim12i 338 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
543adant3 1017 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
6 nn0sub 9322 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
75, 6syl 14 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → (𝐾𝑁 ↔ (𝑁𝐾) ∈ ℕ0))
81, 7mpbid 147 . . 3 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → (𝑁𝐾) ∈ ℕ0)
9 simp2 998 . . 3 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → 𝑁 ∈ ℕ)
10 nngt0 8947 . . . . 5 (𝐾 ∈ ℕ → 0 < 𝐾)
11103ad2ant1 1018 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → 0 < 𝐾)
12 nnre 8929 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
13 nnre 8929 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1412, 13anim12i 338 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
15143adant3 1017 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
16 ltsubpos 8414 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝐾 ↔ (𝑁𝐾) < 𝑁))
1715, 16syl 14 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → (0 < 𝐾 ↔ (𝑁𝐾) < 𝑁))
1811, 17mpbid 147 . . 3 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → (𝑁𝐾) < 𝑁)
198, 9, 183jca 1177 . 2 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁) → ((𝑁𝐾) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑁𝐾) < 𝑁))
20 elfz1b 10093 . 2 (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾𝑁))
21 elfzo0 10185 . 2 ((𝑁𝐾) ∈ (0..^𝑁) ↔ ((𝑁𝐾) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑁𝐾) < 𝑁))
2219, 20, 213imtr4i 201 1 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wcel 2148   class class class wbr 4005  (class class class)co 5878  cr 7813  0cc0 7814  1c1 7815   < clt 7995  cle 7996  cmin 8131  cn 8922  0cn0 9179  ...cfz 10011  ..^cfzo 10145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-fzo 10146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator