ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uhgreq12g Unicode version

Theorem uhgreq12g 15841
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v  |-  V  =  (Vtx `  G )
uhgrf.e  |-  E  =  (iEdg `  G )
uhgreq12g.w  |-  W  =  (Vtx `  H )
uhgreq12g.f  |-  F  =  (iEdg `  H )
Assertion
Ref Expression
uhgreq12g  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( G  e. UHGraph  <->  H  e. UHGraph ) )

Proof of Theorem uhgreq12g
Dummy variables  s  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgrf.v . . . . 5  |-  V  =  (Vtx `  G )
2 uhgrf.e . . . . 5  |-  E  =  (iEdg `  G )
31, 2isuhgrm 15836 . . . 4  |-  ( G  e.  X  ->  ( G  e. UHGraph  <->  E : dom  E --> { s  e.  ~P V  |  E. j 
j  e.  s } ) )
43adantr 276 . . 3  |-  ( ( G  e.  X  /\  H  e.  Y )  ->  ( G  e. UHGraph  <->  E : dom  E --> { s  e. 
~P V  |  E. j  j  e.  s } ) )
54adantr 276 . 2  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( G  e. UHGraph  <->  E : dom  E --> { s  e. 
~P V  |  E. j  j  e.  s } ) )
6 simpr 110 . . . 4  |-  ( ( V  =  W  /\  E  =  F )  ->  E  =  F )
76dmeqd 4902 . . . 4  |-  ( ( V  =  W  /\  E  =  F )  ->  dom  E  =  dom  F )
8 pweq 3632 . . . . . 6  |-  ( V  =  W  ->  ~P V  =  ~P W
)
98rabeqdv 2773 . . . . 5  |-  ( V  =  W  ->  { s  e.  ~P V  |  E. j  j  e.  s }  =  {
s  e.  ~P W  |  E. j  j  e.  s } )
109adantr 276 . . . 4  |-  ( ( V  =  W  /\  E  =  F )  ->  { s  e.  ~P V  |  E. j 
j  e.  s }  =  { s  e. 
~P W  |  E. j  j  e.  s } )
116, 7, 10feq123d 5440 . . 3  |-  ( ( V  =  W  /\  E  =  F )  ->  ( E : dom  E --> { s  e.  ~P V  |  E. j 
j  e.  s }  <-> 
F : dom  F --> { s  e.  ~P W  |  E. j 
j  e.  s } ) )
12 uhgreq12g.w . . . . . 6  |-  W  =  (Vtx `  H )
13 uhgreq12g.f . . . . . 6  |-  F  =  (iEdg `  H )
1412, 13isuhgrm 15836 . . . . 5  |-  ( H  e.  Y  ->  ( H  e. UHGraph  <->  F : dom  F --> { s  e.  ~P W  |  E. j 
j  e.  s } ) )
1514adantl 277 . . . 4  |-  ( ( G  e.  X  /\  H  e.  Y )  ->  ( H  e. UHGraph  <->  F : dom  F --> { s  e. 
~P W  |  E. j  j  e.  s } ) )
1615bicomd 141 . . 3  |-  ( ( G  e.  X  /\  H  e.  Y )  ->  ( F : dom  F --> { s  e.  ~P W  |  E. j 
j  e.  s }  <-> 
H  e. UHGraph ) )
1711, 16sylan9bbr 463 . 2  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( E : dom  E --> { s  e.  ~P V  |  E. j 
j  e.  s }  <-> 
H  e. UHGraph ) )
185, 17bitrd 188 1  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( G  e. UHGraph  <->  H  e. UHGraph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375   E.wex 1518    e. wcel 2180   {crab 2492   ~Pcpw 3629   dom cdm 4696   -->wf 5290   ` cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  UHGraphcuhgr 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-uhgrm 15834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator