| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uhgreq12g | GIF version | ||
| Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.) |
| Ref | Expression |
|---|---|
| uhgrf.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgrf.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| uhgreq12g.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| uhgreq12g.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| Ref | Expression |
|---|---|
| uhgreq12g | ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrf.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | uhgrf.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 1, 2 | isuhgrm 15879 | . . . 4 ⊢ (𝐺 ∈ 𝑋 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 5 | 4 | adantr 276 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 6 | simpr 110 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → 𝐸 = 𝐹) | |
| 7 | 6 | dmeqd 4925 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → dom 𝐸 = dom 𝐹) |
| 8 | pweq 3652 | . . . . . 6 ⊢ (𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊) | |
| 9 | 8 | rabeqdv 2793 | . . . . 5 ⊢ (𝑉 = 𝑊 → {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ 𝒫 𝑊 ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ 𝒫 𝑊 ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 11 | 6, 7, 10 | feq123d 5464 | . . 3 ⊢ ((𝑉 = 𝑊 ∧ 𝐸 = 𝐹) → (𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ 𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑊 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 12 | uhgreq12g.w | . . . . . 6 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 13 | uhgreq12g.f | . . . . . 6 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 14 | 12, 13 | isuhgrm 15879 | . . . . 5 ⊢ (𝐻 ∈ 𝑌 → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑊 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 15 | 14 | adantl 277 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑊 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 16 | 15 | bicomd 141 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐹:dom 𝐹⟶{𝑠 ∈ 𝒫 𝑊 ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ 𝐻 ∈ UHGraph)) |
| 17 | 11, 16 | sylan9bbr 463 | . 2 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ 𝐻 ∈ UHGraph)) |
| 18 | 5, 17 | bitrd 188 | 1 ⊢ (((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) ∧ (𝑉 = 𝑊 ∧ 𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {crab 2512 𝒫 cpw 3649 dom cdm 4719 ⟶wf 5314 ‘cfv 5318 Vtxcvtx 15821 iEdgciedg 15822 UHGraphcuhgr 15875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 df-ndx 13043 df-slot 13044 df-base 13046 df-edgf 15814 df-vtx 15823 df-iedg 15824 df-uhgrm 15877 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |