ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrupgr Unicode version

Theorem umgrupgr 15897
Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.)
Assertion
Ref Expression
umgrupgr  |-  ( G  e. UMGraph  ->  G  e. UPGraph )

Proof of Theorem umgrupgr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2229 . . . 4  |-  (iEdg `  G )  =  (iEdg `  G )
31, 2umgrfen 15892 . . 3  |-  ( G  e. UMGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )
4 olc 716 . . . . . 6  |-  ( x 
~~  2o  ->  ( x 
~~  1o  \/  x  ~~  2o ) )
54a1i 9 . . . . 5  |-  ( x  e.  ~P (Vtx `  G )  ->  (
x  ~~  2o  ->  ( x  ~~  1o  \/  x  ~~  2o ) ) )
65ss2rabi 3306 . . . 4  |-  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o }  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }
76a1i 9 . . 3  |-  ( G  e. UMGraph  ->  { x  e. 
~P (Vtx `  G
)  |  x  ~~  2o }  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
83, 7fssd 5482 . 2  |-  ( G  e. UMGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
91, 2isupgren 15880 . 2  |-  ( G  e. UMGraph  ->  ( G  e. UPGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
108, 9mpbird 167 1  |-  ( G  e. UMGraph  ->  G  e. UPGraph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    e. wcel 2200   {crab 2512    C_ wss 3197   ~Pcpw 3649   class class class wbr 4082   dom cdm 4716   -->wf 5310   ` cfv 5314   1oc1o 6545   2oc2o 6546    ~~ cen 6875  Vtxcvtx 15798  iEdgciedg 15799  UPGraphcupgr 15876  UMGraphcumgr 15877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-sub 8307  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-dec 9567  df-ndx 13021  df-slot 13022  df-base 13024  df-edgf 15791  df-vtx 15800  df-iedg 15801  df-upgren 15878  df-umgren 15879
This theorem is referenced by:  umgruhgr  15898  upgr0e  15904  umgrislfupgrdom  15914
  Copyright terms: Public domain W3C validator