ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0fin GIF version

Theorem 0fin 6897
Description: The empty set is finite. (Contributed by FL, 14-Jul-2008.)
Assertion
Ref Expression
0fin ∅ ∈ Fin

Proof of Theorem 0fin
StepHypRef Expression
1 peano1 4605 . 2 ∅ ∈ ω
2 nnfi 6885 . 2 (∅ ∈ ω → ∅ ∈ Fin)
31, 2ax-mp 5 1 ∅ ∈ Fin
Colors of variables: wff set class
Syntax hints:  wcel 2158  c0 3434  ωcom 4601  Fincfn 6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-en 6754  df-fin 6756
This theorem is referenced by:  xpfi  6942  ssfirab  6946  fnfi  6949  iunfidisj  6958  fidcenumlemr  6967  fzfig  10443  fihasheq0  10786  hash0  10789
  Copyright terms: Public domain W3C validator