![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addgtge0d | GIF version |
Description: Addition of positive and nonnegative numbers is positive. (Contributed by Asger C. Ipsen, 12-May-2021.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
addgtge0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
addgtge0d.4 | ⊢ (𝜑 → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
addgtge0d | ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | addgtge0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
4 | addgtge0d.4 | . 2 ⊢ (𝜑 → 0 ≤ 𝐵) | |
5 | addgtge0 8421 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ 𝐵)) → 0 < (𝐴 + 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 1249 | 1 ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 class class class wbr 4015 (class class class)co 5888 ℝcr 7824 0cc0 7825 + caddc 7828 < clt 8006 ≤ cle 8007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0id 7933 ax-rnegex 7934 ax-pre-ltwlin 7938 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-cnv 4646 df-iota 5190 df-fv 5236 df-ov 5891 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 |
This theorem is referenced by: cosordlem 14623 nconstwlpolemgt0 15166 |
Copyright terms: Public domain | W3C validator |