Step | Hyp | Ref
| Expression |
1 | | grpsubval.b |
. . . . 5
β’ π΅ = (BaseβπΊ) |
2 | 1 | a1i 9 |
. . . 4
β’ ((π β π΅ β§ π β π΅) β π΅ = (BaseβπΊ)) |
3 | | simpl 109 |
. . . 4
β’ ((π β π΅ β§ π β π΅) β π β π΅) |
4 | 2, 3 | basmexd 12524 |
. . 3
β’ ((π β π΅ β§ π β π΅) β πΊ β V) |
5 | | grpsubval.p |
. . . 4
β’ + =
(+gβπΊ) |
6 | | grpsubval.i |
. . . 4
β’ πΌ = (invgβπΊ) |
7 | | grpsubval.m |
. . . 4
β’ β =
(-gβπΊ) |
8 | 1, 5, 6, 7 | grpsubfvalg 12923 |
. . 3
β’ (πΊ β V β β =
(π₯ β π΅, π¦ β π΅ β¦ (π₯ + (πΌβπ¦)))) |
9 | 4, 8 | syl 14 |
. 2
β’ ((π β π΅ β§ π β π΅) β β = (π₯ β π΅, π¦ β π΅ β¦ (π₯ + (πΌβπ¦)))) |
10 | | oveq1 5884 |
. . . 4
β’ (π₯ = π β (π₯ + (πΌβπ¦)) = (π + (πΌβπ¦))) |
11 | | fveq2 5517 |
. . . . 5
β’ (π¦ = π β (πΌβπ¦) = (πΌβπ)) |
12 | 11 | oveq2d 5893 |
. . . 4
β’ (π¦ = π β (π + (πΌβπ¦)) = (π + (πΌβπ))) |
13 | 10, 12 | sylan9eq 2230 |
. . 3
β’ ((π₯ = π β§ π¦ = π) β (π₯ + (πΌβπ¦)) = (π + (πΌβπ))) |
14 | 13 | adantl 277 |
. 2
β’ (((π β π΅ β§ π β π΅) β§ (π₯ = π β§ π¦ = π)) β (π₯ + (πΌβπ¦)) = (π + (πΌβπ))) |
15 | | simpr 110 |
. 2
β’ ((π β π΅ β§ π β π΅) β π β π΅) |
16 | | plusgslid 12573 |
. . . . . 6
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
17 | 16 | slotex 12491 |
. . . . 5
β’ (πΊ β V β
(+gβπΊ)
β V) |
18 | 4, 17 | syl 14 |
. . . 4
β’ ((π β π΅ β§ π β π΅) β (+gβπΊ) β V) |
19 | 5, 18 | eqeltrid 2264 |
. . 3
β’ ((π β π΅ β§ π β π΅) β + β V) |
20 | | eqid 2177 |
. . . . . . 7
β’
(0gβπΊ) = (0gβπΊ) |
21 | 1, 5, 20, 6 | grpinvfvalg 12920 |
. . . . . 6
β’ (πΊ β V β πΌ = (π§ β π΅ β¦ (β©π€ β π΅ (π€ + π§) = (0gβπΊ)))) |
22 | 4, 21 | syl 14 |
. . . . 5
β’ ((π β π΅ β§ π β π΅) β πΌ = (π§ β π΅ β¦ (β©π€ β π΅ (π€ + π§) = (0gβπΊ)))) |
23 | | basfn 12522 |
. . . . . . . 8
β’ Base Fn
V |
24 | | funfvex 5534 |
. . . . . . . . 9
β’ ((Fun
Base β§ πΊ β dom
Base) β (BaseβπΊ)
β V) |
25 | 24 | funfni 5318 |
. . . . . . . 8
β’ ((Base Fn
V β§ πΊ β V) β
(BaseβπΊ) β
V) |
26 | 23, 4, 25 | sylancr 414 |
. . . . . . 7
β’ ((π β π΅ β§ π β π΅) β (BaseβπΊ) β V) |
27 | 1, 26 | eqeltrid 2264 |
. . . . . 6
β’ ((π β π΅ β§ π β π΅) β π΅ β V) |
28 | 27 | mptexd 5745 |
. . . . 5
β’ ((π β π΅ β§ π β π΅) β (π§ β π΅ β¦ (β©π€ β π΅ (π€ + π§) = (0gβπΊ))) β V) |
29 | 22, 28 | eqeltrd 2254 |
. . . 4
β’ ((π β π΅ β§ π β π΅) β πΌ β V) |
30 | | fvexg 5536 |
. . . 4
β’ ((πΌ β V β§ π β π΅) β (πΌβπ) β V) |
31 | 29, 30 | sylancom 420 |
. . 3
β’ ((π β π΅ β§ π β π΅) β (πΌβπ) β V) |
32 | | ovexg 5911 |
. . 3
β’ ((π β π΅ β§ + β V β§ (πΌβπ) β V) β (π + (πΌβπ)) β V) |
33 | 3, 19, 31, 32 | syl3anc 1238 |
. 2
β’ ((π β π΅ β§ π β π΅) β (π + (πΌβπ)) β V) |
34 | 9, 14, 3, 15, 33 | ovmpod 6004 |
1
β’ ((π β π΅ β§ π β π΅) β (π β π) = (π + (πΌβπ))) |