| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubval | GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘𝐺)) |
| 3 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | 2, 3 | basmexd 12936 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ V) |
| 5 | grpsubval.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 1, 5, 6, 7 | grpsubfvalg 13421 | . . 3 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 9 | 4, 8 | syl 14 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 10 | oveq1 5958 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 11 | fveq2 5583 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 12 | 11 | oveq2d 5967 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 13 | 10, 12 | sylan9eq 2259 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 14 | 13 | adantl 277 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 15 | simpr 110 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 16 | plusgslid 12988 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 17 | 16 | slotex 12903 | . . . . 5 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
| 18 | 4, 17 | syl 14 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘𝐺) ∈ V) |
| 19 | 5, 18 | eqeltrid 2293 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + ∈ V) |
| 20 | eqid 2206 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 21 | 1, 5, 20, 6 | grpinvfvalg 13418 | . . . . . 6 ⊢ (𝐺 ∈ V → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 22 | 4, 21 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 23 | basfn 12934 | . . . . . . . 8 ⊢ Base Fn V | |
| 24 | funfvex 5600 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 25 | 24 | funfni 5381 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 26 | 23, 4, 25 | sylancr 414 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘𝐺) ∈ V) |
| 27 | 1, 26 | eqeltrid 2293 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) |
| 28 | 27 | mptexd 5818 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺))) ∈ V) |
| 29 | 22, 28 | eqeltrd 2283 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 ∈ V) |
| 30 | fvexg 5602 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) | |
| 31 | 29, 30 | sylancom 420 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) |
| 32 | ovexg 5985 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ + ∈ V ∧ (𝐼‘𝑌) ∈ V) → (𝑋 + (𝐼‘𝑌)) ∈ V) | |
| 33 | 3, 19, 31, 32 | syl3anc 1250 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝐼‘𝑌)) ∈ V) |
| 34 | 9, 14, 3, 15, 33 | ovmpod 6080 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ↦ cmpt 4109 Fn wfn 5271 ‘cfv 5276 ℩crio 5905 (class class class)co 5951 ∈ cmpo 5953 Basecbs 12876 +gcplusg 12953 0gc0g 13132 invgcminusg 13377 -gcsg 13378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-minusg 13380 df-sbg 13381 |
| This theorem is referenced by: grpsubinv 13449 grpsubrcan 13457 grpinvsub 13458 grpinvval2 13459 grpsubid 13460 grpsubid1 13461 grpsubeq0 13462 grpsubadd0sub 13463 grpsubadd 13464 grpsubsub 13465 grpaddsubass 13466 grpnpcan 13468 pwssub 13489 mulgsubdir 13542 subgsubcl 13565 subgsub 13566 issubg4m 13573 qussub 13617 ghmsub 13631 ablsub2inv 13691 ablsub4 13693 ablsubsub4 13699 eqgabl 13710 rngsubdi 13757 rngsubdir 13758 ringsubdi 13862 ringsubdir 13863 lmodvsubval2 14148 lmodsubdir 14151 cnfldsub 14381 |
| Copyright terms: Public domain | W3C validator |