| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubval | GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘𝐺)) |
| 3 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | 2, 3 | basmexd 13059 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ V) |
| 5 | grpsubval.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 1, 5, 6, 7 | grpsubfvalg 13544 | . . 3 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 9 | 4, 8 | syl 14 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 10 | oveq1 5981 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 11 | fveq2 5603 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 12 | 11 | oveq2d 5990 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 13 | 10, 12 | sylan9eq 2262 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 14 | 13 | adantl 277 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 15 | simpr 110 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 16 | plusgslid 13111 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 17 | 16 | slotex 13025 | . . . . 5 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
| 18 | 4, 17 | syl 14 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘𝐺) ∈ V) |
| 19 | 5, 18 | eqeltrid 2296 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + ∈ V) |
| 20 | eqid 2209 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 21 | 1, 5, 20, 6 | grpinvfvalg 13541 | . . . . . 6 ⊢ (𝐺 ∈ V → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 22 | 4, 21 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 23 | basfn 13057 | . . . . . . . 8 ⊢ Base Fn V | |
| 24 | funfvex 5620 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 25 | 24 | funfni 5399 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 26 | 23, 4, 25 | sylancr 414 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘𝐺) ∈ V) |
| 27 | 1, 26 | eqeltrid 2296 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) |
| 28 | 27 | mptexd 5839 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺))) ∈ V) |
| 29 | 22, 28 | eqeltrd 2286 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 ∈ V) |
| 30 | fvexg 5622 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) | |
| 31 | 29, 30 | sylancom 420 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) |
| 32 | ovexg 6008 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ + ∈ V ∧ (𝐼‘𝑌) ∈ V) → (𝑋 + (𝐼‘𝑌)) ∈ V) | |
| 33 | 3, 19, 31, 32 | syl3anc 1252 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝐼‘𝑌)) ∈ V) |
| 34 | 9, 14, 3, 15, 33 | ovmpod 6103 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ↦ cmpt 4124 Fn wfn 5289 ‘cfv 5294 ℩crio 5926 (class class class)co 5974 ∈ cmpo 5976 Basecbs 12998 +gcplusg 13076 0gc0g 13255 invgcminusg 13500 -gcsg 13501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-minusg 13503 df-sbg 13504 |
| This theorem is referenced by: grpsubinv 13572 grpsubrcan 13580 grpinvsub 13581 grpinvval2 13582 grpsubid 13583 grpsubid1 13584 grpsubeq0 13585 grpsubadd0sub 13586 grpsubadd 13587 grpsubsub 13588 grpaddsubass 13589 grpnpcan 13591 pwssub 13612 mulgsubdir 13665 subgsubcl 13688 subgsub 13689 issubg4m 13696 qussub 13740 ghmsub 13754 ablsub2inv 13814 ablsub4 13816 ablsubsub4 13822 eqgabl 13833 rngsubdi 13880 rngsubdir 13881 ringsubdi 13985 ringsubdir 13986 lmodvsubval2 14271 lmodsubdir 14274 cnfldsub 14504 |
| Copyright terms: Public domain | W3C validator |