| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubval | GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘𝐺)) |
| 3 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | 2, 3 | basmexd 13101 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ V) |
| 5 | grpsubval.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 1, 5, 6, 7 | grpsubfvalg 13586 | . . 3 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 9 | 4, 8 | syl 14 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 10 | oveq1 6014 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 11 | fveq2 5629 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 12 | 11 | oveq2d 6023 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 13 | 10, 12 | sylan9eq 2282 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 14 | 13 | adantl 277 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 15 | simpr 110 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 16 | plusgslid 13153 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 17 | 16 | slotex 13067 | . . . . 5 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
| 18 | 4, 17 | syl 14 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘𝐺) ∈ V) |
| 19 | 5, 18 | eqeltrid 2316 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + ∈ V) |
| 20 | eqid 2229 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 21 | 1, 5, 20, 6 | grpinvfvalg 13583 | . . . . . 6 ⊢ (𝐺 ∈ V → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 22 | 4, 21 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 23 | basfn 13099 | . . . . . . . 8 ⊢ Base Fn V | |
| 24 | funfvex 5646 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 25 | 24 | funfni 5423 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 26 | 23, 4, 25 | sylancr 414 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘𝐺) ∈ V) |
| 27 | 1, 26 | eqeltrid 2316 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) |
| 28 | 27 | mptexd 5870 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺))) ∈ V) |
| 29 | 22, 28 | eqeltrd 2306 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 ∈ V) |
| 30 | fvexg 5648 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) | |
| 31 | 29, 30 | sylancom 420 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) |
| 32 | ovexg 6041 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ + ∈ V ∧ (𝐼‘𝑌) ∈ V) → (𝑋 + (𝐼‘𝑌)) ∈ V) | |
| 33 | 3, 19, 31, 32 | syl3anc 1271 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝐼‘𝑌)) ∈ V) |
| 34 | 9, 14, 3, 15, 33 | ovmpod 6138 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4145 Fn wfn 5313 ‘cfv 5318 ℩crio 5959 (class class class)co 6007 ∈ cmpo 6009 Basecbs 13040 +gcplusg 13118 0gc0g 13297 invgcminusg 13542 -gcsg 13543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-minusg 13545 df-sbg 13546 |
| This theorem is referenced by: grpsubinv 13614 grpsubrcan 13622 grpinvsub 13623 grpinvval2 13624 grpsubid 13625 grpsubid1 13626 grpsubeq0 13627 grpsubadd0sub 13628 grpsubadd 13629 grpsubsub 13630 grpaddsubass 13631 grpnpcan 13633 pwssub 13654 mulgsubdir 13707 subgsubcl 13730 subgsub 13731 issubg4m 13738 qussub 13782 ghmsub 13796 ablsub2inv 13856 ablsub4 13858 ablsubsub4 13864 eqgabl 13875 rngsubdi 13922 rngsubdir 13923 ringsubdi 14027 ringsubdir 14028 lmodvsubval2 14314 lmodsubdir 14317 cnfldsub 14547 |
| Copyright terms: Public domain | W3C validator |