ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubval GIF version

Theorem grpsubval 13422
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubval ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))

Proof of Theorem grpsubval
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubval.b . . . . 5 𝐵 = (Base‘𝐺)
21a1i 9 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝐵 = (Base‘𝐺))
3 simpl 109 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
42, 3basmexd 12936 . . 3 ((𝑋𝐵𝑌𝐵) → 𝐺 ∈ V)
5 grpsubval.p . . . 4 + = (+g𝐺)
6 grpsubval.i . . . 4 𝐼 = (invg𝐺)
7 grpsubval.m . . . 4 = (-g𝐺)
81, 5, 6, 7grpsubfvalg 13421 . . 3 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
94, 8syl 14 . 2 ((𝑋𝐵𝑌𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
10 oveq1 5958 . . . 4 (𝑥 = 𝑋 → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑦)))
11 fveq2 5583 . . . . 5 (𝑦 = 𝑌 → (𝐼𝑦) = (𝐼𝑌))
1211oveq2d 5967 . . . 4 (𝑦 = 𝑌 → (𝑋 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
1310, 12sylan9eq 2259 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
1413adantl 277 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
15 simpr 110 . 2 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
16 plusgslid 12988 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 12903 . . . . 5 (𝐺 ∈ V → (+g𝐺) ∈ V)
184, 17syl 14 . . . 4 ((𝑋𝐵𝑌𝐵) → (+g𝐺) ∈ V)
195, 18eqeltrid 2293 . . 3 ((𝑋𝐵𝑌𝐵) → + ∈ V)
20 eqid 2206 . . . . . . 7 (0g𝐺) = (0g𝐺)
211, 5, 20, 6grpinvfvalg 13418 . . . . . 6 (𝐺 ∈ V → 𝐼 = (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))))
224, 21syl 14 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝐼 = (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))))
23 basfn 12934 . . . . . . . 8 Base Fn V
24 funfvex 5600 . . . . . . . . 9 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
2524funfni 5381 . . . . . . . 8 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2623, 4, 25sylancr 414 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (Base‘𝐺) ∈ V)
271, 26eqeltrid 2293 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝐵 ∈ V)
2827mptexd 5818 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))) ∈ V)
2922, 28eqeltrd 2283 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝐼 ∈ V)
30 fvexg 5602 . . . 4 ((𝐼 ∈ V ∧ 𝑌𝐵) → (𝐼𝑌) ∈ V)
3129, 30sylancom 420 . . 3 ((𝑋𝐵𝑌𝐵) → (𝐼𝑌) ∈ V)
32 ovexg 5985 . . 3 ((𝑋𝐵+ ∈ V ∧ (𝐼𝑌) ∈ V) → (𝑋 + (𝐼𝑌)) ∈ V)
333, 19, 31, 32syl3anc 1250 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋 + (𝐼𝑌)) ∈ V)
349, 14, 3, 15, 33ovmpod 6080 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cmpt 4109   Fn wfn 5271  cfv 5276  crio 5905  (class class class)co 5951  cmpo 5953  Basecbs 12876  +gcplusg 12953  0gc0g 13132  invgcminusg 13377  -gcsg 13378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-minusg 13380  df-sbg 13381
This theorem is referenced by:  grpsubinv  13449  grpsubrcan  13457  grpinvsub  13458  grpinvval2  13459  grpsubid  13460  grpsubid1  13461  grpsubeq0  13462  grpsubadd0sub  13463  grpsubadd  13464  grpsubsub  13465  grpaddsubass  13466  grpnpcan  13468  pwssub  13489  mulgsubdir  13542  subgsubcl  13565  subgsub  13566  issubg4m  13573  qussub  13617  ghmsub  13631  ablsub2inv  13691  ablsub4  13693  ablsubsub4  13699  eqgabl  13710  rngsubdi  13757  rngsubdir  13758  ringsubdi  13862  ringsubdir  13863  lmodvsubval2  14148  lmodsubdir  14151  cnfldsub  14381
  Copyright terms: Public domain W3C validator