ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubval GIF version

Theorem grpsubval 12749
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubval ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))

Proof of Theorem grpsubval
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubval.b . . . . 5 𝐵 = (Base‘𝐺)
21a1i 9 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝐵 = (Base‘𝐺))
3 simpl 108 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
42, 3basmexd 12475 . . 3 ((𝑋𝐵𝑌𝐵) → 𝐺 ∈ V)
5 grpsubval.p . . . 4 + = (+g𝐺)
6 grpsubval.i . . . 4 𝐼 = (invg𝐺)
7 grpsubval.m . . . 4 = (-g𝐺)
81, 5, 6, 7grpsubfvalg 12748 . . 3 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
94, 8syl 14 . 2 ((𝑋𝐵𝑌𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
10 oveq1 5860 . . . 4 (𝑥 = 𝑋 → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑦)))
11 fveq2 5496 . . . . 5 (𝑦 = 𝑌 → (𝐼𝑦) = (𝐼𝑌))
1211oveq2d 5869 . . . 4 (𝑦 = 𝑌 → (𝑋 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
1310, 12sylan9eq 2223 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
1413adantl 275 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
15 simpr 109 . 2 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
16 plusgslid 12513 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 12443 . . . . 5 (𝐺 ∈ V → (+g𝐺) ∈ V)
184, 17syl 14 . . . 4 ((𝑋𝐵𝑌𝐵) → (+g𝐺) ∈ V)
195, 18eqeltrid 2257 . . 3 ((𝑋𝐵𝑌𝐵) → + ∈ V)
20 eqid 2170 . . . . . . 7 (0g𝐺) = (0g𝐺)
211, 5, 20, 6grpinvfvalg 12745 . . . . . 6 (𝐺 ∈ V → 𝐼 = (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))))
224, 21syl 14 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝐼 = (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))))
23 basfn 12473 . . . . . . . 8 Base Fn V
24 funfvex 5513 . . . . . . . . 9 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
2524funfni 5298 . . . . . . . 8 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2623, 4, 25sylancr 412 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (Base‘𝐺) ∈ V)
271, 26eqeltrid 2257 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝐵 ∈ V)
2827mptexd 5723 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))) ∈ V)
2922, 28eqeltrd 2247 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝐼 ∈ V)
30 fvexg 5515 . . . 4 ((𝐼 ∈ V ∧ 𝑌𝐵) → (𝐼𝑌) ∈ V)
3129, 30sylancom 418 . . 3 ((𝑋𝐵𝑌𝐵) → (𝐼𝑌) ∈ V)
32 ovexg 5887 . . 3 ((𝑋𝐵+ ∈ V ∧ (𝐼𝑌) ∈ V) → (𝑋 + (𝐼𝑌)) ∈ V)
333, 19, 31, 32syl3anc 1233 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋 + (𝐼𝑌)) ∈ V)
349, 14, 3, 15, 33ovmpod 5980 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cmpt 4050   Fn wfn 5193  cfv 5198  crio 5808  (class class class)co 5853  cmpo 5855  Basecbs 12416  +gcplusg 12480  0gc0g 12596  invgcminusg 12709  -gcsg 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-minusg 12712  df-sbg 12713
This theorem is referenced by:  grpsubinv  12772
  Copyright terms: Public domain W3C validator