Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpsubval | GIF version |
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubval.p | ⊢ + = (+g‘𝐺) |
grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
grpsubval.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘𝐺)) |
3 | simpl 108 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
4 | 2, 3 | basmexd 12475 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ V) |
5 | grpsubval.p | . . . 4 ⊢ + = (+g‘𝐺) | |
6 | grpsubval.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
7 | grpsubval.m | . . . 4 ⊢ − = (-g‘𝐺) | |
8 | 1, 5, 6, 7 | grpsubfvalg 12748 | . . 3 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
9 | 4, 8 | syl 14 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
10 | oveq1 5860 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
11 | fveq2 5496 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
12 | 11 | oveq2d 5869 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
13 | 10, 12 | sylan9eq 2223 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
14 | 13 | adantl 275 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
15 | simpr 109 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
16 | plusgslid 12513 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
17 | 16 | slotex 12443 | . . . . 5 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
18 | 4, 17 | syl 14 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘𝐺) ∈ V) |
19 | 5, 18 | eqeltrid 2257 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + ∈ V) |
20 | eqid 2170 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
21 | 1, 5, 20, 6 | grpinvfvalg 12745 | . . . . . 6 ⊢ (𝐺 ∈ V → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
22 | 4, 21 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
23 | basfn 12473 | . . . . . . . 8 ⊢ Base Fn V | |
24 | funfvex 5513 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
25 | 24 | funfni 5298 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
26 | 23, 4, 25 | sylancr 412 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘𝐺) ∈ V) |
27 | 1, 26 | eqeltrid 2257 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) |
28 | 27 | mptexd 5723 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺))) ∈ V) |
29 | 22, 28 | eqeltrd 2247 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 ∈ V) |
30 | fvexg 5515 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) | |
31 | 29, 30 | sylancom 418 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) |
32 | ovexg 5887 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ + ∈ V ∧ (𝐼‘𝑌) ∈ V) → (𝑋 + (𝐼‘𝑌)) ∈ V) | |
33 | 3, 19, 31, 32 | syl3anc 1233 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝐼‘𝑌)) ∈ V) |
34 | 9, 14, 3, 15, 33 | ovmpod 5980 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ↦ cmpt 4050 Fn wfn 5193 ‘cfv 5198 ℩crio 5808 (class class class)co 5853 ∈ cmpo 5855 Basecbs 12416 +gcplusg 12480 0gc0g 12596 invgcminusg 12709 -gcsg 12710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-minusg 12712 df-sbg 12713 |
This theorem is referenced by: grpsubinv 12772 |
Copyright terms: Public domain | W3C validator |