| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubval | GIF version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubval.p | ⊢ + = (+g‘𝐺) |
| grpsubval.i | ⊢ 𝐼 = (invg‘𝐺) |
| grpsubval.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 = (Base‘𝐺)) |
| 3 | simpl 109 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 4 | 2, 3 | basmexd 12765 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐺 ∈ V) |
| 5 | grpsubval.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | grpsubval.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | grpsubval.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 1, 5, 6, 7 | grpsubfvalg 13249 | . . 3 ⊢ (𝐺 ∈ V → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 9 | 4, 8 | syl 14 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → − = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + (𝐼‘𝑦)))) |
| 10 | oveq1 5932 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑦))) | |
| 11 | fveq2 5561 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐼‘𝑦) = (𝐼‘𝑌)) | |
| 12 | 11 | oveq2d 5941 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 13 | 10, 12 | sylan9eq 2249 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 14 | 13 | adantl 277 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥 + (𝐼‘𝑦)) = (𝑋 + (𝐼‘𝑌))) |
| 15 | simpr 110 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 16 | plusgslid 12817 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 17 | 16 | slotex 12732 | . . . . 5 ⊢ (𝐺 ∈ V → (+g‘𝐺) ∈ V) |
| 18 | 4, 17 | syl 14 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (+g‘𝐺) ∈ V) |
| 19 | 5, 18 | eqeltrid 2283 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + ∈ V) |
| 20 | eqid 2196 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 21 | 1, 5, 20, 6 | grpinvfvalg 13246 | . . . . . 6 ⊢ (𝐺 ∈ V → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 22 | 4, 21 | syl 14 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 = (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺)))) |
| 23 | basfn 12763 | . . . . . . . 8 ⊢ Base Fn V | |
| 24 | funfvex 5578 | . . . . . . . . 9 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 25 | 24 | funfni 5361 | . . . . . . . 8 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 26 | 23, 4, 25 | sylancr 414 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (Base‘𝐺) ∈ V) |
| 27 | 1, 26 | eqeltrid 2283 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐵 ∈ V) |
| 28 | 27 | mptexd 5792 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑧 ∈ 𝐵 ↦ (℩𝑤 ∈ 𝐵 (𝑤 + 𝑧) = (0g‘𝐺))) ∈ V) |
| 29 | 22, 28 | eqeltrd 2273 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐼 ∈ V) |
| 30 | fvexg 5580 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) | |
| 31 | 29, 30 | sylancom 420 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐼‘𝑌) ∈ V) |
| 32 | ovexg 5959 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ + ∈ V ∧ (𝐼‘𝑌) ∈ V) → (𝑋 + (𝐼‘𝑌)) ∈ V) | |
| 33 | 3, 19, 31, 32 | syl3anc 1249 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝐼‘𝑌)) ∈ V) |
| 34 | 9, 14, 3, 15, 33 | ovmpod 6054 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) = (𝑋 + (𝐼‘𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4095 Fn wfn 5254 ‘cfv 5259 ℩crio 5879 (class class class)co 5925 ∈ cmpo 5927 Basecbs 12705 +gcplusg 12782 0gc0g 12960 invgcminusg 13205 -gcsg 13206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9010 df-2 9068 df-ndx 12708 df-slot 12709 df-base 12711 df-plusg 12795 df-minusg 13208 df-sbg 13209 |
| This theorem is referenced by: grpsubinv 13277 grpsubrcan 13285 grpinvsub 13286 grpinvval2 13287 grpsubid 13288 grpsubid1 13289 grpsubeq0 13290 grpsubadd0sub 13291 grpsubadd 13292 grpsubsub 13293 grpaddsubass 13294 grpnpcan 13296 pwssub 13317 mulgsubdir 13370 subgsubcl 13393 subgsub 13394 issubg4m 13401 qussub 13445 ghmsub 13459 ablsub2inv 13519 ablsub4 13521 ablsubsub4 13527 eqgabl 13538 rngsubdi 13585 rngsubdir 13586 ringsubdi 13690 ringsubdir 13691 lmodvsubval2 13976 lmodsubdir 13979 cnfldsub 14209 |
| Copyright terms: Public domain | W3C validator |