ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubval GIF version

Theorem grpsubval 13587
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubval ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))

Proof of Theorem grpsubval
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubval.b . . . . 5 𝐵 = (Base‘𝐺)
21a1i 9 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝐵 = (Base‘𝐺))
3 simpl 109 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
42, 3basmexd 13101 . . 3 ((𝑋𝐵𝑌𝐵) → 𝐺 ∈ V)
5 grpsubval.p . . . 4 + = (+g𝐺)
6 grpsubval.i . . . 4 𝐼 = (invg𝐺)
7 grpsubval.m . . . 4 = (-g𝐺)
81, 5, 6, 7grpsubfvalg 13586 . . 3 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
94, 8syl 14 . 2 ((𝑋𝐵𝑌𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
10 oveq1 6014 . . . 4 (𝑥 = 𝑋 → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑦)))
11 fveq2 5629 . . . . 5 (𝑦 = 𝑌 → (𝐼𝑦) = (𝐼𝑌))
1211oveq2d 6023 . . . 4 (𝑦 = 𝑌 → (𝑋 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
1310, 12sylan9eq 2282 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
1413adantl 277 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥 + (𝐼𝑦)) = (𝑋 + (𝐼𝑌)))
15 simpr 110 . 2 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
16 plusgslid 13153 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
1716slotex 13067 . . . . 5 (𝐺 ∈ V → (+g𝐺) ∈ V)
184, 17syl 14 . . . 4 ((𝑋𝐵𝑌𝐵) → (+g𝐺) ∈ V)
195, 18eqeltrid 2316 . . 3 ((𝑋𝐵𝑌𝐵) → + ∈ V)
20 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
211, 5, 20, 6grpinvfvalg 13583 . . . . . 6 (𝐺 ∈ V → 𝐼 = (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))))
224, 21syl 14 . . . . 5 ((𝑋𝐵𝑌𝐵) → 𝐼 = (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))))
23 basfn 13099 . . . . . . . 8 Base Fn V
24 funfvex 5646 . . . . . . . . 9 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
2524funfni 5423 . . . . . . . 8 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
2623, 4, 25sylancr 414 . . . . . . 7 ((𝑋𝐵𝑌𝐵) → (Base‘𝐺) ∈ V)
271, 26eqeltrid 2316 . . . . . 6 ((𝑋𝐵𝑌𝐵) → 𝐵 ∈ V)
2827mptexd 5870 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑧𝐵 ↦ (𝑤𝐵 (𝑤 + 𝑧) = (0g𝐺))) ∈ V)
2922, 28eqeltrd 2306 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝐼 ∈ V)
30 fvexg 5648 . . . 4 ((𝐼 ∈ V ∧ 𝑌𝐵) → (𝐼𝑌) ∈ V)
3129, 30sylancom 420 . . 3 ((𝑋𝐵𝑌𝐵) → (𝐼𝑌) ∈ V)
32 ovexg 6041 . . 3 ((𝑋𝐵+ ∈ V ∧ (𝐼𝑌) ∈ V) → (𝑋 + (𝐼𝑌)) ∈ V)
333, 19, 31, 32syl3anc 1271 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋 + (𝐼𝑌)) ∈ V)
349, 14, 3, 15, 33ovmpod 6138 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + (𝐼𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cmpt 4145   Fn wfn 5313  cfv 5318  crio 5959  (class class class)co 6007  cmpo 6009  Basecbs 13040  +gcplusg 13118  0gc0g 13297  invgcminusg 13542  -gcsg 13543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-minusg 13545  df-sbg 13546
This theorem is referenced by:  grpsubinv  13614  grpsubrcan  13622  grpinvsub  13623  grpinvval2  13624  grpsubid  13625  grpsubid1  13626  grpsubeq0  13627  grpsubadd0sub  13628  grpsubadd  13629  grpsubsub  13630  grpaddsubass  13631  grpnpcan  13633  pwssub  13654  mulgsubdir  13707  subgsubcl  13730  subgsub  13731  issubg4m  13738  qussub  13782  ghmsub  13796  ablsub2inv  13856  ablsub4  13858  ablsubsub4  13864  eqgabl  13875  rngsubdi  13922  rngsubdir  13923  ringsubdi  14027  ringsubdir  14028  lmodvsubval2  14314  lmodsubdir  14317  cnfldsub  14547
  Copyright terms: Public domain W3C validator