ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub GIF version

Theorem mertenslemub 11544
Description: Lemma for mertensabs 11547. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertenslemub.b ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertenslemub.cvg (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertenslemub.t 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertenslemub.elt (𝜑𝑋𝑇)
mertenslemub.s (𝜑𝑆 ∈ ℕ)
Assertion
Ref Expression
mertenslemub (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Distinct variable groups:   𝑘,𝐺,𝑛,𝑧   𝑆,𝑘,𝑛,𝑧   𝑛,𝑋,𝑧   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧,𝑘,𝑛)   𝑇(𝑧,𝑘,𝑛)   𝑋(𝑘)

Proof of Theorem mertenslemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4 (𝜑𝑋𝑇)
2 eqeq1 2184 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
32rexbidv 2478 . . . . . 6 (𝑧 = 𝑋 → (∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
4 mertenslemub.t . . . . . 6 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
53, 4elab2g 2886 . . . . 5 (𝑋𝑇 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
61, 5syl 14 . . . 4 (𝜑 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
71, 6mpbid 147 . . 3 (𝜑 → ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8 fvoveq1 5900 . . . . . . 7 (𝑛 = 𝑎 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑎 + 1)))
98sumeq1d 11376 . . . . . 6 (𝑛 = 𝑎 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))
109fveq2d 5521 . . . . 5 (𝑛 = 𝑎 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
1110eqeq2d 2189 . . . 4 (𝑛 = 𝑎 → (𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))))
1211cbvrexv 2706 . . 3 (∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
137, 12sylib 122 . 2 (𝜑 → ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
14 simprr 531 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
15 0zd 9267 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 0 ∈ ℤ)
16 mertenslemub.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
1716adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℕ)
1817nnzd 9376 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℤ)
19 1zzd 9282 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 1 ∈ ℤ)
2018, 19zsubcld 9382 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (𝑆 − 1) ∈ ℤ)
2115, 20fzfigd 10433 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (0...(𝑆 − 1)) ∈ Fin)
22 eqid 2177 . . . . . . 7 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
23 elfzelz 10027 . . . . . . . . 9 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℤ)
2423adantl 277 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℤ)
2524peano2zd 9380 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℤ)
26 eqidd 2178 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
27 simpll 527 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
28 elfznn0 10116 . . . . . . . . . . 11 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℕ0)
2928ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
30 peano2nn0 9218 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
32 eluznn0 9601 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
3331, 32sylancom 420 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
34 mertenslemub.gb . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
35 mertenslemub.b . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3634, 35eqeltrd 2254 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3727, 33, 36syl2anc 411 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
38 mertenslemub.cvg . . . . . . . . 9 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3938adantr 276 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
40 nn0uz 9564 . . . . . . . . 9 0 = (ℤ‘0)
4128adantl 277 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℕ0)
4241, 30syl 14 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℕ0)
4336adantlr 477 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
4440, 42, 43iserex 11349 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
4539, 44mpbid 147 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
4622, 25, 26, 37, 45isumcl 11435 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4746adantlr 477 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4847abscld 11192 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
4947absge0d 11195 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
50 simprl 529 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑎 ∈ (0...(𝑆 − 1)))
5121, 48, 49, 10, 50fsumge1 11471 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)) ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5214, 51eqbrtrd 4027 . 2 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5313, 52rexlimddv 2599 1 (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wrex 2456   class class class wbr 4005  dom cdm 4628  cfv 5218  (class class class)co 5877  cc 7811  0cc0 7813  1c1 7814   + caddc 7816  cle 7995  cmin 8130  cn 8921  0cn0 9178  cz 9255  cuz 9530  ...cfz 10010  seqcseq 10447  abscabs 11008  cli 11288  Σcsu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-ico 9896  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  mertenslem2  11546
  Copyright terms: Public domain W3C validator