| Step | Hyp | Ref
 | Expression | 
| 1 |   | mertenslemub.elt | 
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑇) | 
| 2 |   | eqeq1 2203 | 
. . . . . . 7
⊢ (𝑧 = 𝑋 → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) | 
| 3 | 2 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑧 = 𝑋 → (∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) | 
| 4 |   | mertenslemub.t | 
. . . . . 6
⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} | 
| 5 | 3, 4 | elab2g 2911 | 
. . . . 5
⊢ (𝑋 ∈ 𝑇 → (𝑋 ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) | 
| 6 | 1, 5 | syl 14 | 
. . . 4
⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) | 
| 7 | 1, 6 | mpbid 147 | 
. . 3
⊢ (𝜑 → ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) | 
| 8 |   | fvoveq1 5945 | 
. . . . . . 7
⊢ (𝑛 = 𝑎 → (ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘(𝑎 + 1))) | 
| 9 | 8 | sumeq1d 11531 | 
. . . . . 6
⊢ (𝑛 = 𝑎 → Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)) | 
| 10 | 9 | fveq2d 5562 | 
. . . . 5
⊢ (𝑛 = 𝑎 → (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) | 
| 11 | 10 | eqeq2d 2208 | 
. . . 4
⊢ (𝑛 = 𝑎 → (𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) | 
| 12 | 11 | cbvrexv 2730 | 
. . 3
⊢
(∃𝑛 ∈
(0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) | 
| 13 | 7, 12 | sylib 122 | 
. 2
⊢ (𝜑 → ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) | 
| 14 |   | simprr 531 | 
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) | 
| 15 |   | 0zd 9338 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 0 ∈
ℤ) | 
| 16 |   | mertenslemub.s | 
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℕ) | 
| 17 | 16 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑆 ∈ ℕ) | 
| 18 | 17 | nnzd 9447 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑆 ∈ ℤ) | 
| 19 |   | 1zzd 9353 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 1 ∈
ℤ) | 
| 20 | 18, 19 | zsubcld 9453 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → (𝑆 − 1) ∈ ℤ) | 
| 21 | 15, 20 | fzfigd 10523 | 
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → (0...(𝑆 − 1)) ∈ Fin) | 
| 22 |   | eqid 2196 | 
. . . . . . 7
⊢
(ℤ≥‘(𝑛 + 1)) = (ℤ≥‘(𝑛 + 1)) | 
| 23 |   | elfzelz 10100 | 
. . . . . . . . 9
⊢ (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℤ) | 
| 24 | 23 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℤ) | 
| 25 | 24 | peano2zd 9451 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℤ) | 
| 26 |   | eqidd 2197 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) = (𝐺‘𝑘)) | 
| 27 |   | simpll 527 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝜑) | 
| 28 |   | elfznn0 10189 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℕ0) | 
| 29 | 28 | ad2antlr 489 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑛 ∈
ℕ0) | 
| 30 |   | peano2nn0 9289 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) | 
| 31 | 29, 30 | syl 14 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) ∈
ℕ0) | 
| 32 |   | eluznn0 9673 | 
. . . . . . . . 9
⊢ (((𝑛 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑘 ∈ ℕ0) | 
| 33 | 31, 32 | sylancom 420 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑘 ∈
ℕ0) | 
| 34 |   | mertenslemub.gb | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) | 
| 35 |   | mertenslemub.b | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) | 
| 36 | 34, 35 | eqeltrd 2273 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) | 
| 37 | 27, 33, 36 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) ∈ ℂ) | 
| 38 |   | mertenslemub.cvg | 
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) | 
| 39 | 38 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → seq0( + , 𝐺) ∈ dom ⇝
) | 
| 40 |   | nn0uz 9636 | 
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) | 
| 41 | 28 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℕ0) | 
| 42 | 41, 30 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈
ℕ0) | 
| 43 | 36 | adantlr 477 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) | 
| 44 | 40, 42, 43 | iserex 11504 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝
)) | 
| 45 | 39, 44 | mpbid 147 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ) | 
| 46 | 22, 25, 26, 37, 45 | isumcl 11590 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) ∈ ℂ) | 
| 47 | 46 | adantlr 477 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) ∈ ℂ) | 
| 48 | 47 | abscld 11346 | 
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ∈ ℝ) | 
| 49 | 47 | absge0d 11349 | 
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 0 ≤
(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) | 
| 50 |   | simprl 529 | 
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑎 ∈ (0...(𝑆 − 1))) | 
| 51 | 21, 48, 49, 10, 50 | fsumge1 11626 | 
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)) ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) | 
| 52 | 14, 51 | eqbrtrd 4055 | 
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) | 
| 53 | 13, 52 | rexlimddv 2619 | 
1
⊢ (𝜑 → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |