ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub GIF version

Theorem mertenslemub 11486
Description: Lemma for mertensabs 11489. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertenslemub.b ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertenslemub.cvg (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertenslemub.t 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertenslemub.elt (𝜑𝑋𝑇)
mertenslemub.s (𝜑𝑆 ∈ ℕ)
Assertion
Ref Expression
mertenslemub (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Distinct variable groups:   𝑘,𝐺,𝑛,𝑧   𝑆,𝑘,𝑛,𝑧   𝑛,𝑋,𝑧   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧,𝑘,𝑛)   𝑇(𝑧,𝑘,𝑛)   𝑋(𝑘)

Proof of Theorem mertenslemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4 (𝜑𝑋𝑇)
2 eqeq1 2177 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
32rexbidv 2471 . . . . . 6 (𝑧 = 𝑋 → (∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
4 mertenslemub.t . . . . . 6 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
53, 4elab2g 2877 . . . . 5 (𝑋𝑇 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
61, 5syl 14 . . . 4 (𝜑 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
71, 6mpbid 146 . . 3 (𝜑 → ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8 fvoveq1 5874 . . . . . . 7 (𝑛 = 𝑎 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑎 + 1)))
98sumeq1d 11318 . . . . . 6 (𝑛 = 𝑎 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))
109fveq2d 5498 . . . . 5 (𝑛 = 𝑎 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
1110eqeq2d 2182 . . . 4 (𝑛 = 𝑎 → (𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))))
1211cbvrexv 2697 . . 3 (∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
137, 12sylib 121 . 2 (𝜑 → ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
14 simprr 527 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
15 0zd 9213 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 0 ∈ ℤ)
16 mertenslemub.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
1716adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℕ)
1817nnzd 9322 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℤ)
19 1zzd 9228 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 1 ∈ ℤ)
2018, 19zsubcld 9328 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (𝑆 − 1) ∈ ℤ)
2115, 20fzfigd 10376 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (0...(𝑆 − 1)) ∈ Fin)
22 eqid 2170 . . . . . . 7 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
23 elfzelz 9970 . . . . . . . . 9 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℤ)
2423adantl 275 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℤ)
2524peano2zd 9326 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℤ)
26 eqidd 2171 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
27 simpll 524 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
28 elfznn0 10059 . . . . . . . . . . 11 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℕ0)
2928ad2antlr 486 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
30 peano2nn0 9164 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
32 eluznn0 9547 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
3331, 32sylancom 418 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
34 mertenslemub.gb . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
35 mertenslemub.b . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3634, 35eqeltrd 2247 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3727, 33, 36syl2anc 409 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
38 mertenslemub.cvg . . . . . . . . 9 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3938adantr 274 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
40 nn0uz 9510 . . . . . . . . 9 0 = (ℤ‘0)
4128adantl 275 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℕ0)
4241, 30syl 14 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℕ0)
4336adantlr 474 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
4440, 42, 43iserex 11291 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
4539, 44mpbid 146 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
4622, 25, 26, 37, 45isumcl 11377 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4746adantlr 474 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4847abscld 11134 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
4947absge0d 11137 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
50 simprl 526 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑎 ∈ (0...(𝑆 − 1)))
5121, 48, 49, 10, 50fsumge1 11413 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)) ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5214, 51eqbrtrd 4009 . 2 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5313, 52rexlimddv 2592 1 (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  wrex 2449   class class class wbr 3987  dom cdm 4609  cfv 5196  (class class class)co 5851  cc 7761  0cc0 7763  1c1 7764   + caddc 7766  cle 7944  cmin 8079  cn 8867  0cn0 9124  cz 9201  cuz 9476  ...cfz 9954  seqcseq 10390  abscabs 10950  cli 11230  Σcsu 11305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6510  df-en 6716  df-dom 6717  df-fin 6718  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-ico 9840  df-fz 9955  df-fzo 10088  df-seqfrec 10391  df-exp 10465  df-ihash 10699  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-clim 11231  df-sumdc 11306
This theorem is referenced by:  mertenslem2  11488
  Copyright terms: Public domain W3C validator