ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub GIF version

Theorem mertenslemub 11680
Description: Lemma for mertensabs 11683. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertenslemub.b ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertenslemub.cvg (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertenslemub.t 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertenslemub.elt (𝜑𝑋𝑇)
mertenslemub.s (𝜑𝑆 ∈ ℕ)
Assertion
Ref Expression
mertenslemub (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Distinct variable groups:   𝑘,𝐺,𝑛,𝑧   𝑆,𝑘,𝑛,𝑧   𝑛,𝑋,𝑧   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧,𝑘,𝑛)   𝑇(𝑧,𝑘,𝑛)   𝑋(𝑘)

Proof of Theorem mertenslemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4 (𝜑𝑋𝑇)
2 eqeq1 2200 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
32rexbidv 2495 . . . . . 6 (𝑧 = 𝑋 → (∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
4 mertenslemub.t . . . . . 6 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
53, 4elab2g 2908 . . . . 5 (𝑋𝑇 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
61, 5syl 14 . . . 4 (𝜑 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
71, 6mpbid 147 . . 3 (𝜑 → ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8 fvoveq1 5942 . . . . . . 7 (𝑛 = 𝑎 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑎 + 1)))
98sumeq1d 11512 . . . . . 6 (𝑛 = 𝑎 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))
109fveq2d 5559 . . . . 5 (𝑛 = 𝑎 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
1110eqeq2d 2205 . . . 4 (𝑛 = 𝑎 → (𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))))
1211cbvrexv 2727 . . 3 (∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
137, 12sylib 122 . 2 (𝜑 → ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
14 simprr 531 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
15 0zd 9332 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 0 ∈ ℤ)
16 mertenslemub.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
1716adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℕ)
1817nnzd 9441 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℤ)
19 1zzd 9347 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 1 ∈ ℤ)
2018, 19zsubcld 9447 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (𝑆 − 1) ∈ ℤ)
2115, 20fzfigd 10505 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (0...(𝑆 − 1)) ∈ Fin)
22 eqid 2193 . . . . . . 7 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
23 elfzelz 10094 . . . . . . . . 9 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℤ)
2423adantl 277 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℤ)
2524peano2zd 9445 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℤ)
26 eqidd 2194 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
27 simpll 527 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
28 elfznn0 10183 . . . . . . . . . . 11 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℕ0)
2928ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
30 peano2nn0 9283 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
32 eluznn0 9667 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
3331, 32sylancom 420 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
34 mertenslemub.gb . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
35 mertenslemub.b . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3634, 35eqeltrd 2270 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3727, 33, 36syl2anc 411 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
38 mertenslemub.cvg . . . . . . . . 9 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3938adantr 276 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
40 nn0uz 9630 . . . . . . . . 9 0 = (ℤ‘0)
4128adantl 277 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℕ0)
4241, 30syl 14 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℕ0)
4336adantlr 477 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
4440, 42, 43iserex 11485 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
4539, 44mpbid 147 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
4622, 25, 26, 37, 45isumcl 11571 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4746adantlr 477 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4847abscld 11328 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
4947absge0d 11331 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
50 simprl 529 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑎 ∈ (0...(𝑆 − 1)))
5121, 48, 49, 10, 50fsumge1 11607 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)) ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5214, 51eqbrtrd 4052 . 2 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5313, 52rexlimddv 2616 1 (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  {cab 2179  wrex 2473   class class class wbr 4030  dom cdm 4660  cfv 5255  (class class class)co 5919  cc 7872  0cc0 7874  1c1 7875   + caddc 7877  cle 8057  cmin 8192  cn 8984  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521  abscabs 11144  cli 11424  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  mertenslem2  11682
  Copyright terms: Public domain W3C validator