| Step | Hyp | Ref
| Expression |
| 1 | | mertenslemub.elt |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑇) |
| 2 | | eqeq1 2203 |
. . . . . . 7
⊢ (𝑧 = 𝑋 → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 3 | 2 | rexbidv 2498 |
. . . . . 6
⊢ (𝑧 = 𝑋 → (∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 4 | | mertenslemub.t |
. . . . . 6
⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
| 5 | 3, 4 | elab2g 2911 |
. . . . 5
⊢ (𝑋 ∈ 𝑇 → (𝑋 ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 6 | 1, 5 | syl 14 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 7 | 1, 6 | mpbid 147 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 8 | | fvoveq1 5948 |
. . . . . . 7
⊢ (𝑛 = 𝑎 → (ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘(𝑎 + 1))) |
| 9 | 8 | sumeq1d 11548 |
. . . . . 6
⊢ (𝑛 = 𝑎 → Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)) |
| 10 | 9 | fveq2d 5565 |
. . . . 5
⊢ (𝑛 = 𝑎 → (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) |
| 11 | 10 | eqeq2d 2208 |
. . . 4
⊢ (𝑛 = 𝑎 → (𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) |
| 12 | 11 | cbvrexv 2730 |
. . 3
⊢
(∃𝑛 ∈
(0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) |
| 13 | 7, 12 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) |
| 14 | | simprr 531 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘))) |
| 15 | | 0zd 9355 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 0 ∈
ℤ) |
| 16 | | mertenslemub.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℕ) |
| 17 | 16 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑆 ∈ ℕ) |
| 18 | 17 | nnzd 9464 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑆 ∈ ℤ) |
| 19 | | 1zzd 9370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 1 ∈
ℤ) |
| 20 | 18, 19 | zsubcld 9470 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → (𝑆 − 1) ∈ ℤ) |
| 21 | 15, 20 | fzfigd 10540 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → (0...(𝑆 − 1)) ∈ Fin) |
| 22 | | eqid 2196 |
. . . . . . 7
⊢
(ℤ≥‘(𝑛 + 1)) = (ℤ≥‘(𝑛 + 1)) |
| 23 | | elfzelz 10117 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℤ) |
| 24 | 23 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℤ) |
| 25 | 24 | peano2zd 9468 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℤ) |
| 26 | | eqidd 2197 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
| 27 | | simpll 527 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝜑) |
| 28 | | elfznn0 10206 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℕ0) |
| 29 | 28 | ad2antlr 489 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑛 ∈
ℕ0) |
| 30 | | peano2nn0 9306 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
| 31 | 29, 30 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) ∈
ℕ0) |
| 32 | | eluznn0 9690 |
. . . . . . . . 9
⊢ (((𝑛 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑘 ∈ ℕ0) |
| 33 | 31, 32 | sylancom 420 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑘 ∈
ℕ0) |
| 34 | | mertenslemub.gb |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
| 35 | | mertenslemub.b |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
| 36 | 34, 35 | eqeltrd 2273 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 37 | 27, 33, 36 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) ∈ ℂ) |
| 38 | | mertenslemub.cvg |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
| 39 | 38 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → seq0( + , 𝐺) ∈ dom ⇝
) |
| 40 | | nn0uz 9653 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 41 | 28 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℕ0) |
| 42 | 41, 30 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈
ℕ0) |
| 43 | 36 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 44 | 40, 42, 43 | iserex 11521 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝
)) |
| 45 | 39, 44 | mpbid 147 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ) |
| 46 | 22, 25, 26, 37, 45 | isumcl 11607 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) ∈ ℂ) |
| 47 | 46 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) ∈ ℂ) |
| 48 | 47 | abscld 11363 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ∈ ℝ) |
| 49 | 47 | absge0d 11366 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 0 ≤
(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 50 | | simprl 529 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑎 ∈ (0...(𝑆 − 1))) |
| 51 | 21, 48, 49, 10, 50 | fsumge1 11643 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)) ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 52 | 14, 51 | eqbrtrd 4056 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑎 + 1))(𝐺‘𝑘)))) → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 53 | 13, 52 | rexlimddv 2619 |
1
⊢ (𝜑 → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |