ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub GIF version

Theorem mertenslemub 11699
Description: Lemma for mertensabs 11702. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertenslemub.b ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertenslemub.cvg (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertenslemub.t 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertenslemub.elt (𝜑𝑋𝑇)
mertenslemub.s (𝜑𝑆 ∈ ℕ)
Assertion
Ref Expression
mertenslemub (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Distinct variable groups:   𝑘,𝐺,𝑛,𝑧   𝑆,𝑘,𝑛,𝑧   𝑛,𝑋,𝑧   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧,𝑘,𝑛)   𝑇(𝑧,𝑘,𝑛)   𝑋(𝑘)

Proof of Theorem mertenslemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4 (𝜑𝑋𝑇)
2 eqeq1 2203 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
32rexbidv 2498 . . . . . 6 (𝑧 = 𝑋 → (∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
4 mertenslemub.t . . . . . 6 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
53, 4elab2g 2911 . . . . 5 (𝑋𝑇 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
61, 5syl 14 . . . 4 (𝜑 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
71, 6mpbid 147 . . 3 (𝜑 → ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8 fvoveq1 5945 . . . . . . 7 (𝑛 = 𝑎 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑎 + 1)))
98sumeq1d 11531 . . . . . 6 (𝑛 = 𝑎 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))
109fveq2d 5562 . . . . 5 (𝑛 = 𝑎 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
1110eqeq2d 2208 . . . 4 (𝑛 = 𝑎 → (𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))))
1211cbvrexv 2730 . . 3 (∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
137, 12sylib 122 . 2 (𝜑 → ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
14 simprr 531 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
15 0zd 9338 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 0 ∈ ℤ)
16 mertenslemub.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
1716adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℕ)
1817nnzd 9447 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℤ)
19 1zzd 9353 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 1 ∈ ℤ)
2018, 19zsubcld 9453 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (𝑆 − 1) ∈ ℤ)
2115, 20fzfigd 10523 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (0...(𝑆 − 1)) ∈ Fin)
22 eqid 2196 . . . . . . 7 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
23 elfzelz 10100 . . . . . . . . 9 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℤ)
2423adantl 277 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℤ)
2524peano2zd 9451 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℤ)
26 eqidd 2197 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
27 simpll 527 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
28 elfznn0 10189 . . . . . . . . . . 11 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℕ0)
2928ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
30 peano2nn0 9289 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
32 eluznn0 9673 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
3331, 32sylancom 420 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
34 mertenslemub.gb . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
35 mertenslemub.b . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3634, 35eqeltrd 2273 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3727, 33, 36syl2anc 411 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
38 mertenslemub.cvg . . . . . . . . 9 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3938adantr 276 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
40 nn0uz 9636 . . . . . . . . 9 0 = (ℤ‘0)
4128adantl 277 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℕ0)
4241, 30syl 14 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℕ0)
4336adantlr 477 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
4440, 42, 43iserex 11504 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
4539, 44mpbid 147 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
4622, 25, 26, 37, 45isumcl 11590 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4746adantlr 477 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4847abscld 11346 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
4947absge0d 11349 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
50 simprl 529 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑎 ∈ (0...(𝑆 − 1)))
5121, 48, 49, 10, 50fsumge1 11626 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)) ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5214, 51eqbrtrd 4055 . 2 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5313, 52rexlimddv 2619 1 (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wrex 2476   class class class wbr 4033  dom cdm 4663  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882  cle 8062  cmin 8197  cn 8990  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539  abscabs 11162  cli 11443  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  mertenslem2  11701
  Copyright terms: Public domain W3C validator