ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub GIF version

Theorem mertenslemub 10989
Description: Lemma for mertensabs 10992. An upper bound for 𝑇. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertenslemub.b ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertenslemub.cvg (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertenslemub.t 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertenslemub.elt (𝜑𝑋𝑇)
mertenslemub.s (𝜑𝑆 ∈ ℕ)
Assertion
Ref Expression
mertenslemub (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Distinct variable groups:   𝑘,𝐺,𝑛,𝑧   𝑆,𝑘,𝑛,𝑧   𝑛,𝑋,𝑧   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧,𝑘,𝑛)   𝑇(𝑧,𝑘,𝑛)   𝑋(𝑘)

Proof of Theorem mertenslemub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4 (𝜑𝑋𝑇)
2 eqeq1 2095 . . . . . . 7 (𝑧 = 𝑋 → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
32rexbidv 2382 . . . . . 6 (𝑧 = 𝑋 → (∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
4 mertenslemub.t . . . . . 6 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑆 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
53, 4elab2g 2763 . . . . 5 (𝑋𝑇 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
61, 5syl 14 . . . 4 (𝜑 → (𝑋𝑇 ↔ ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
71, 6mpbid 146 . . 3 (𝜑 → ∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8 fvoveq1 5689 . . . . . . 7 (𝑛 = 𝑎 → (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑎 + 1)))
98sumeq1d 10816 . . . . . 6 (𝑛 = 𝑎 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))
109fveq2d 5322 . . . . 5 (𝑛 = 𝑎 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
1110eqeq2d 2100 . . . 4 (𝑛 = 𝑎 → (𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘))))
1211cbvrexv 2592 . . 3 (∃𝑛 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
137, 12sylib 121 . 2 (𝜑 → ∃𝑎 ∈ (0...(𝑆 − 1))𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
14 simprr 500 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))
15 0zd 8823 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 0 ∈ ℤ)
16 mertenslemub.s . . . . . . . 8 (𝜑𝑆 ∈ ℕ)
1716adantr 271 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℕ)
1817nnzd 8928 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑆 ∈ ℤ)
19 1zzd 8838 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 1 ∈ ℤ)
2018, 19zsubcld 8934 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (𝑆 − 1) ∈ ℤ)
2115, 20fzfigd 9899 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (0...(𝑆 − 1)) ∈ Fin)
22 eqid 2089 . . . . . . 7 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
23 elfzelz 9501 . . . . . . . . 9 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℤ)
2423adantl 272 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℤ)
2524peano2zd 8932 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℤ)
26 eqidd 2090 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
27 simpll 497 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
28 elfznn0 9589 . . . . . . . . . . 11 (𝑛 ∈ (0...(𝑆 − 1)) → 𝑛 ∈ ℕ0)
2928ad2antlr 474 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
30 peano2nn0 8774 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
32 eluznn0 9147 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
3331, 32sylancom 412 . . . . . . . 8 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
34 mertenslemub.gb . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
35 mertenslemub.b . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
3634, 35eqeltrd 2165 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
3727, 33, 36syl2anc 404 . . . . . . 7 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
38 mertenslemub.cvg . . . . . . . . 9 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
3938adantr 271 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
40 nn0uz 9114 . . . . . . . . 9 0 = (ℤ‘0)
4128adantl 272 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → 𝑛 ∈ ℕ0)
4241, 30syl 14 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (𝑛 + 1) ∈ ℕ0)
4336adantlr 462 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...(𝑆 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
4440, 42, 43iserex 10788 . . . . . . . 8 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
4539, 44mpbid 146 . . . . . . 7 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
4622, 25, 26, 37, 45isumcl 10880 . . . . . 6 ((𝜑𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4746adantlr 462 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
4847abscld 10675 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
4947absge0d 10678 . . . 4 (((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) ∧ 𝑛 ∈ (0...(𝑆 − 1))) → 0 ≤ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
50 simprl 499 . . . 4 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑎 ∈ (0...(𝑆 − 1)))
5121, 48, 49, 10, 50fsumge1 10916 . . 3 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)) ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5214, 51eqbrtrd 3871 . 2 ((𝜑 ∧ (𝑎 ∈ (0...(𝑆 − 1)) ∧ 𝑋 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑎 + 1))(𝐺𝑘)))) → 𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5313, 52rexlimddv 2494 1 (𝜑𝑋 ≤ Σ𝑛 ∈ (0...(𝑆 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wcel 1439  {cab 2075  wrex 2361   class class class wbr 3851  dom cdm 4452  cfv 5028  (class class class)co 5666  cc 7409  0cc0 7411  1c1 7412   + caddc 7414  cle 7584  cmin 7714  cn 8483  0cn0 8734  cz 8811  cuz 9080  ...cfz 9485  seqcseq 9913  abscabs 10491  cli 10727  Σcsu 10803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-ico 9373  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804
This theorem is referenced by:  mertenslem2  10991
  Copyright terms: Public domain W3C validator