ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islssmg GIF version

Theorem islssmg 13854
Description: The predicate "is a subspace" (of a left module or left vector space). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) Use islssm 13853 instead. (New usage is discouraged.)
Hypotheses
Ref Expression
lssset.f 𝐹 = (Scalar‘𝑊)
lssset.b 𝐵 = (Base‘𝐹)
lssset.v 𝑉 = (Base‘𝑊)
lssset.p + = (+g𝑊)
lssset.t · = ( ·𝑠𝑊)
lssset.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islssmg (𝑊𝑋 → (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
Distinct variable groups:   𝑥,𝐵   𝑎,𝑏,𝑥,𝑊   𝑈,𝑎,𝑏,𝑥,𝑗
Allowed substitution hints:   𝐵(𝑗,𝑎,𝑏)   + (𝑥,𝑗,𝑎,𝑏)   𝑆(𝑥,𝑗,𝑎,𝑏)   · (𝑥,𝑗,𝑎,𝑏)   𝐹(𝑥,𝑗,𝑎,𝑏)   𝑉(𝑥,𝑗,𝑎,𝑏)   𝑊(𝑗)   𝑋(𝑥,𝑗,𝑎,𝑏)

Proof of Theorem islssmg
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lssset.f . . . 4 𝐹 = (Scalar‘𝑊)
2 lssset.b . . . 4 𝐵 = (Base‘𝐹)
3 lssset.v . . . 4 𝑉 = (Base‘𝑊)
4 lssset.p . . . 4 + = (+g𝑊)
5 lssset.t . . . 4 · = ( ·𝑠𝑊)
6 lssset.s . . . 4 𝑆 = (LSubSp‘𝑊)
71, 2, 3, 4, 5, 6lsssetm 13852 . . 3 (𝑊𝑋𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})
87eleq2d 2263 . 2 (𝑊𝑋 → (𝑈𝑆𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}))
9 basfn 12676 . . . . . . 7 Base Fn V
10 elex 2771 . . . . . . 7 (𝑊𝑋𝑊 ∈ V)
11 funfvex 5571 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1211funfni 5354 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
139, 10, 12sylancr 414 . . . . . 6 (𝑊𝑋 → (Base‘𝑊) ∈ V)
143, 13eqeltrid 2280 . . . . 5 (𝑊𝑋𝑉 ∈ V)
15 elpw2g 4185 . . . . 5 (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉𝑈𝑉))
1614, 15syl 14 . . . 4 (𝑊𝑋 → (𝑈 ∈ 𝒫 𝑉𝑈𝑉))
1716anbi1d 465 . . 3 (𝑊𝑋 → ((𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) ↔ (𝑈𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))))
18 eleq2 2257 . . . . . 6 (𝑠 = 𝑈 → (𝑗𝑠𝑗𝑈))
1918exbidv 1836 . . . . 5 (𝑠 = 𝑈 → (∃𝑗 𝑗𝑠 ↔ ∃𝑗 𝑗𝑈))
20 eleq2 2257 . . . . . . . 8 (𝑠 = 𝑈 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2120raleqbi1dv 2702 . . . . . . 7 (𝑠 = 𝑈 → (∀𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2221raleqbi1dv 2702 . . . . . 6 (𝑠 = 𝑈 → (∀𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2322ralbidv 2494 . . . . 5 (𝑠 = 𝑈 → (∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))
2419, 23anbi12d 473 . . . 4 (𝑠 = 𝑈 → ((∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
2524elrab 2916 . . 3 (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
26 3anass 984 . . 3 ((𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ (𝑈𝑉 ∧ (∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
2717, 25, 263bitr4g 223 . 2 (𝑊𝑋 → (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗𝑠 ∧ ∀𝑥𝐵𝑎𝑠𝑏𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
288, 27bitrd 188 1 (𝑊𝑋 → (𝑈𝑆 ↔ (𝑈𝑉 ∧ ∃𝑗 𝑗𝑈 ∧ ∀𝑥𝐵𝑎𝑈𝑏𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  {crab 2476  Vcvv 2760  wss 3153  𝒫 cpw 3601   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Scalarcsca 12698   ·𝑠 cvsca 12699  LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-lssm 13849
This theorem is referenced by:  islssmd  13855  lssssg  13856  lssclg  13860  lss0cl  13865  islss4  13878  lsspropdg  13927
  Copyright terms: Public domain W3C validator