Step | Hyp | Ref
| Expression |
1 | | lssset.f |
. . . 4
⊢ 𝐹 = (Scalar‘𝑊) |
2 | | lssset.b |
. . . 4
⊢ 𝐵 = (Base‘𝐹) |
3 | | lssset.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
4 | | lssset.p |
. . . 4
⊢ + =
(+g‘𝑊) |
5 | | lssset.t |
. . . 4
⊢ · = (
·𝑠 ‘𝑊) |
6 | | lssset.s |
. . . 4
⊢ 𝑆 = (LSubSp‘𝑊) |
7 | 1, 2, 3, 4, 5, 6 | lsssetm 13672 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑆 = {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)}) |
8 | 7 | eleq2d 2259 |
. 2
⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ 𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)})) |
9 | | basfn 12570 |
. . . . . . 7
⊢ Base Fn
V |
10 | | elex 2763 |
. . . . . . 7
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
11 | | funfvex 5551 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) |
12 | 11 | funfni 5335 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) |
13 | 9, 10, 12 | sylancr 414 |
. . . . . 6
⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
14 | 3, 13 | eqeltrid 2276 |
. . . . 5
⊢ (𝑊 ∈ 𝑋 → 𝑉 ∈ V) |
15 | | elpw2g 4174 |
. . . . 5
⊢ (𝑉 ∈ V → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) |
16 | 14, 15 | syl 14 |
. . . 4
⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉)) |
17 | 16 | anbi1d 465 |
. . 3
⊢ (𝑊 ∈ 𝑋 → ((𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) ↔ (𝑈 ⊆ 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)))) |
18 | | eleq2 2253 |
. . . . . 6
⊢ (𝑠 = 𝑈 → (𝑗 ∈ 𝑠 ↔ 𝑗 ∈ 𝑈)) |
19 | 18 | exbidv 1836 |
. . . . 5
⊢ (𝑠 = 𝑈 → (∃𝑗 𝑗 ∈ 𝑠 ↔ ∃𝑗 𝑗 ∈ 𝑈)) |
20 | | eleq2 2253 |
. . . . . . . 8
⊢ (𝑠 = 𝑈 → (((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
21 | 20 | raleqbi1dv 2694 |
. . . . . . 7
⊢ (𝑠 = 𝑈 → (∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
22 | 21 | raleqbi1dv 2694 |
. . . . . 6
⊢ (𝑠 = 𝑈 → (∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
23 | 22 | ralbidv 2490 |
. . . . 5
⊢ (𝑠 = 𝑈 → (∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈)) |
24 | 19, 23 | anbi12d 473 |
. . . 4
⊢ (𝑠 = 𝑈 → ((∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠) ↔ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
25 | 24 | elrab 2908 |
. . 3
⊢ (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈 ∈ 𝒫 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
26 | | 3anass 984 |
. . 3
⊢ ((𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈) ↔ (𝑈 ⊆ 𝑉 ∧ (∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
27 | 17, 25, 26 | 3bitr4g 223 |
. 2
⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ {𝑠 ∈ 𝒫 𝑉 ∣ (∃𝑗 𝑗 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑠)} ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |
28 | 8, 27 | bitrd 188 |
1
⊢ (𝑊 ∈ 𝑋 → (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ ∃𝑗 𝑗 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥 · 𝑎) + 𝑏) ∈ 𝑈))) |