| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ensymd | GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6840. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) | 
| Ref | Expression | 
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 6840 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 class class class wbr 4033 ≈ cen 6797 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-er 6592 df-en 6800 | 
| This theorem is referenced by: f1imaeng 6851 f1imaen2g 6852 en2sn 6872 xpdom3m 6893 phplem4 6916 phplem4dom 6923 php5dom 6924 phpm 6926 phplem4on 6928 dif1en 6940 dif1enen 6941 fisbth 6944 fin0 6946 fin0or 6947 fientri3 6976 unsnfidcex 6981 unsnfidcel 6982 fiintim 6992 fisseneq 6995 f1ofi 7009 endjusym 7162 eninl 7163 eninr 7164 pm54.43 7257 djuen 7278 dju1en 7280 djuassen 7284 xpdjuen 7285 uzenom 10517 hashennnuni 10871 hashennn 10872 hashcl 10873 hashfz1 10875 hashen 10876 fihashfn 10892 fihashdom 10895 hashunlem 10896 zfz1iso 10933 summodclem2 11547 zsumdc 11549 prodmodclem2 11742 zproddc 11744 4sqlem11 12570 ennnfonelemen 12638 exmidunben 12643 ctinfom 12645 ctinf 12647 isnzr2 13740 znfi 14211 znhash 14212 pwf1oexmid 15644 nnnninfen 15665 sbthom 15670 | 
| Copyright terms: Public domain | W3C validator |