| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6903. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 6903 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 class class class wbr 4062 ≈ cen 6855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-er 6650 df-en 6858 |
| This theorem is referenced by: f1imaeng 6914 f1imaen2g 6915 en2sn 6936 xpdom3m 6961 phplem4 6984 phplem4dom 6991 php5dom 6992 phpm 6995 phplem4on 6997 dif1en 7009 dif1enen 7010 fisbth 7013 fin0 7015 fin0or 7016 fientri3 7045 unsnfidcex 7050 unsnfidcel 7051 fiintim 7061 fisseneq 7064 f1ofi 7078 endjusym 7231 eninl 7232 eninr 7233 pm54.43 7331 djuen 7361 dju1en 7363 djuassen 7367 xpdjuen 7368 uzenom 10614 hashennnuni 10968 hashennn 10969 hashcl 10970 hashfz1 10972 hashen 10973 fihashfn 10989 fihashdom 10992 hashunlem 10993 zfz1iso 11030 summodclem2 11859 zsumdc 11861 prodmodclem2 12054 zproddc 12056 4sqlem11 12890 ennnfonelemen 12958 exmidunben 12963 ctinfom 12965 ctinf 12967 isnzr2 14113 znfi 14584 znhash 14585 usgrsizedgen 15976 pwf1oexmid 16276 nnnninfen 16298 sbthom 16305 |
| Copyright terms: Public domain | W3C validator |