Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ensymd | GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 6759. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 6759 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 class class class wbr 3989 ≈ cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-er 6513 df-en 6719 |
This theorem is referenced by: f1imaeng 6770 f1imaen2g 6771 en2sn 6791 xpdom3m 6812 phplem4 6833 phplem4dom 6840 php5dom 6841 phpm 6843 phplem4on 6845 dif1en 6857 dif1enen 6858 fisbth 6861 fin0 6863 fin0or 6864 fientri3 6892 unsnfidcex 6897 unsnfidcel 6898 fiintim 6906 fisseneq 6909 f1ofi 6920 endjusym 7073 eninl 7074 eninr 7075 pm54.43 7167 djuen 7188 dju1en 7190 djuassen 7194 xpdjuen 7195 uzenom 10381 hashennnuni 10713 hashennn 10714 hashcl 10715 hashfz1 10717 hashen 10718 fihashfn 10735 fihashdom 10738 hashunlem 10739 zfz1iso 10776 summodclem2 11345 zsumdc 11347 prodmodclem2 11540 zproddc 11542 ennnfonelemen 12376 exmidunben 12381 ctinfom 12383 ctinf 12385 pwf1oexmid 14032 sbthom 14058 |
Copyright terms: Public domain | W3C validator |