| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6849. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 6849 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 class class class wbr 4034 ≈ cen 6806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-er 6601 df-en 6809 |
| This theorem is referenced by: f1imaeng 6860 f1imaen2g 6861 en2sn 6881 xpdom3m 6902 phplem4 6925 phplem4dom 6932 php5dom 6933 phpm 6935 phplem4on 6937 dif1en 6949 dif1enen 6950 fisbth 6953 fin0 6955 fin0or 6956 fientri3 6985 unsnfidcex 6990 unsnfidcel 6991 fiintim 7001 fisseneq 7004 f1ofi 7018 endjusym 7171 eninl 7172 eninr 7173 pm54.43 7271 djuen 7296 dju1en 7298 djuassen 7302 xpdjuen 7303 uzenom 10536 hashennnuni 10890 hashennn 10891 hashcl 10892 hashfz1 10894 hashen 10895 fihashfn 10911 fihashdom 10914 hashunlem 10915 zfz1iso 10952 summodclem2 11566 zsumdc 11568 prodmodclem2 11761 zproddc 11763 4sqlem11 12597 ennnfonelemen 12665 exmidunben 12670 ctinfom 12672 ctinf 12674 isnzr2 13818 znfi 14289 znhash 14290 pwf1oexmid 15754 nnnninfen 15776 sbthom 15783 |
| Copyright terms: Public domain | W3C validator |