![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ensymd | GIF version |
Description: Symmetry of equinumerosity. Deduction form of ensym 6837. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
Ref | Expression |
---|---|
ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
2 | ensym 6837 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 class class class wbr 4030 ≈ cen 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-er 6589 df-en 6797 |
This theorem is referenced by: f1imaeng 6848 f1imaen2g 6849 en2sn 6869 xpdom3m 6890 phplem4 6913 phplem4dom 6920 php5dom 6921 phpm 6923 phplem4on 6925 dif1en 6937 dif1enen 6938 fisbth 6941 fin0 6943 fin0or 6944 fientri3 6973 unsnfidcex 6978 unsnfidcel 6979 fiintim 6987 fisseneq 6990 f1ofi 7004 endjusym 7157 eninl 7158 eninr 7159 pm54.43 7252 djuen 7273 dju1en 7275 djuassen 7279 xpdjuen 7280 uzenom 10499 hashennnuni 10853 hashennn 10854 hashcl 10855 hashfz1 10857 hashen 10858 fihashfn 10874 fihashdom 10877 hashunlem 10878 zfz1iso 10915 summodclem2 11528 zsumdc 11530 prodmodclem2 11723 zproddc 11725 4sqlem11 12542 ennnfonelemen 12581 exmidunben 12586 ctinfom 12588 ctinf 12590 isnzr2 13683 znfi 14154 znhash 14155 pwf1oexmid 15560 nnnninfen 15581 sbthom 15586 |
Copyright terms: Public domain | W3C validator |