| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6880. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 6880 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 class class class wbr 4047 ≈ cen 6832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-er 6627 df-en 6835 |
| This theorem is referenced by: f1imaeng 6891 f1imaen2g 6892 en2sn 6912 xpdom3m 6936 phplem4 6959 phplem4dom 6966 php5dom 6967 phpm 6969 phplem4on 6971 dif1en 6983 dif1enen 6984 fisbth 6987 fin0 6989 fin0or 6990 fientri3 7019 unsnfidcex 7024 unsnfidcel 7025 fiintim 7035 fisseneq 7038 f1ofi 7052 endjusym 7205 eninl 7206 eninr 7207 pm54.43 7305 djuen 7330 dju1en 7332 djuassen 7336 xpdjuen 7337 uzenom 10577 hashennnuni 10931 hashennn 10932 hashcl 10933 hashfz1 10935 hashen 10936 fihashfn 10952 fihashdom 10955 hashunlem 10956 zfz1iso 10993 summodclem2 11737 zsumdc 11739 prodmodclem2 11932 zproddc 11934 4sqlem11 12768 ennnfonelemen 12836 exmidunben 12841 ctinfom 12843 ctinf 12845 isnzr2 13990 znfi 14461 znhash 14462 pwf1oexmid 16010 nnnninfen 16032 sbthom 16039 |
| Copyright terms: Public domain | W3C validator |