| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ensymd | GIF version | ||
| Description: Symmetry of equinumerosity. Deduction form of ensym 6941. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ensymd.1 | ⊢ (𝜑 → 𝐴 ≈ 𝐵) |
| Ref | Expression |
|---|---|
| ensymd | ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymd.1 | . 2 ⊢ (𝜑 → 𝐴 ≈ 𝐵) | |
| 2 | ensym 6941 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐵 ≈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 class class class wbr 4083 ≈ cen 6893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-er 6688 df-en 6896 |
| This theorem is referenced by: f1imaeng 6952 f1imaen2g 6953 en2sn 6974 xpdom3m 7001 phplem4 7024 phplem4dom 7031 php5dom 7032 phpm 7035 phplem4on 7037 dif1en 7049 dif1enen 7050 fisbth 7053 fin0 7055 fin0or 7056 fientri3 7085 unsnfidcex 7090 unsnfidcel 7091 fiintim 7101 fisseneq 7104 f1ofi 7118 endjusym 7271 eninl 7272 eninr 7273 pm54.43 7371 djuen 7401 dju1en 7403 djuassen 7407 xpdjuen 7408 uzenom 10655 hashennnuni 11009 hashennn 11010 hashcl 11011 hashfz1 11013 hashen 11014 fihashfn 11030 fihashdom 11033 hashunlem 11034 zfz1iso 11071 summodclem2 11901 zsumdc 11903 prodmodclem2 12096 zproddc 12098 4sqlem11 12932 ennnfonelemen 13000 exmidunben 13005 ctinfom 13007 ctinf 13009 isnzr2 14156 znfi 14627 znhash 14628 usgrsizedgen 16019 upgr2wlkdc 16096 fidcen 16379 pwf1oexmid 16394 nnnninfen 16417 sbthom 16424 |
| Copyright terms: Public domain | W3C validator |