| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snfig | GIF version | ||
| Description: A singleton is finite. For the proper class case, see snprc 3688. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6587 | . . 3 ⊢ 1o ∈ ω | |
| 2 | ensn1g 6865 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 3 | breq2 4038 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
| 4 | 3 | rspcev 2868 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 5 | 1, 2, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 6 | isfi 6829 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
| 7 | 5, 6 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 {csn 3623 class class class wbr 4034 ωcom 4627 1oc1o 6476 ≈ cen 6806 Fincfn 6808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-1o 6483 df-en 6809 df-fin 6811 |
| This theorem is referenced by: fiprc 6883 ssfiexmid 6946 domfiexmid 6948 diffitest 6957 unfiexmid 6988 prfidisj 6997 prfidceq 6998 tpfidisj 6999 ssfii 7049 infpwfidom 7277 hashsng 10907 fihashen1 10908 hashunsng 10916 hashprg 10917 hashdifsn 10928 hashdifpr 10929 hashxp 10935 fsumsplitsnun 11601 fsum2dlemstep 11616 fisumcom2 11620 fsumconst 11636 fsumge1 11643 fsum00 11644 hash2iun1dif1 11662 fprod2dlemstep 11804 fprodcom2fi 11808 fprodsplitsn 11815 fprodsplit1f 11816 phicl2 12407 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |