![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snfig | GIF version |
Description: A singleton is finite. For the proper class case, see snprc 3659. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6524 | . . 3 ⊢ 1o ∈ ω | |
2 | ensn1g 6800 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
3 | breq2 4009 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
4 | 3 | rspcev 2843 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
5 | 1, 2, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
6 | isfi 6764 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
7 | 5, 6 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 ∃wrex 2456 {csn 3594 class class class wbr 4005 ωcom 4591 1oc1o 6413 ≈ cen 6741 Fincfn 6743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-1o 6420 df-en 6744 df-fin 6746 |
This theorem is referenced by: fiprc 6818 ssfiexmid 6879 domfiexmid 6881 diffitest 6890 unfiexmid 6920 prfidisj 6929 tpfidisj 6930 ssfii 6976 infpwfidom 7200 hashsng 10781 fihashen1 10782 hashunsng 10790 hashprg 10791 hashdifsn 10802 hashdifpr 10803 hashxp 10809 fsumsplitsnun 11430 fsum2dlemstep 11445 fisumcom2 11449 fsumconst 11465 fsumge1 11472 fsum00 11473 hash2iun1dif1 11491 fprod2dlemstep 11633 fprodcom2fi 11637 fprodsplitsn 11644 fprodsplit1f 11645 phicl2 12217 |
Copyright terms: Public domain | W3C validator |