Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snfig | GIF version |
Description: A singleton is finite. For the proper class case, see snprc 3648. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6499 | . . 3 ⊢ 1o ∈ ω | |
2 | ensn1g 6775 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
3 | breq2 3993 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
4 | 3 | rspcev 2834 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
5 | 1, 2, 4 | sylancr 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
6 | isfi 6739 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
7 | 5, 6 | sylibr 133 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∃wrex 2449 {csn 3583 class class class wbr 3989 ωcom 4574 1oc1o 6388 ≈ cen 6716 Fincfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-1o 6395 df-en 6719 df-fin 6721 |
This theorem is referenced by: fiprc 6793 ssfiexmid 6854 domfiexmid 6856 diffitest 6865 unfiexmid 6895 prfidisj 6904 tpfidisj 6905 ssfii 6951 infpwfidom 7175 hashsng 10733 fihashen1 10734 hashunsng 10742 hashprg 10743 hashdifsn 10754 hashdifpr 10755 hashxp 10761 fsumsplitsnun 11382 fsum2dlemstep 11397 fisumcom2 11401 fsumconst 11417 fsumge1 11424 fsum00 11425 hash2iun1dif1 11443 fprod2dlemstep 11585 fprodcom2fi 11589 fprodsplitsn 11596 fprodsplit1f 11597 phicl2 12168 |
Copyright terms: Public domain | W3C validator |