| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snfig | GIF version | ||
| Description: A singleton is finite. For the proper class case, see snprc 3688. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6582 | . . 3 ⊢ 1o ∈ ω | |
| 2 | ensn1g 6860 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 3 | breq2 4038 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
| 4 | 3 | rspcev 2868 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 5 | 1, 2, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 6 | isfi 6824 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
| 7 | 5, 6 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 {csn 3623 class class class wbr 4034 ωcom 4627 1oc1o 6471 ≈ cen 6801 Fincfn 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-1o 6478 df-en 6804 df-fin 6806 |
| This theorem is referenced by: fiprc 6878 ssfiexmid 6941 domfiexmid 6943 diffitest 6952 unfiexmid 6983 prfidisj 6992 prfidceq 6993 tpfidisj 6994 ssfii 7044 infpwfidom 7270 hashsng 10895 fihashen1 10896 hashunsng 10904 hashprg 10905 hashdifsn 10916 hashdifpr 10917 hashxp 10923 fsumsplitsnun 11589 fsum2dlemstep 11604 fisumcom2 11608 fsumconst 11624 fsumge1 11631 fsum00 11632 hash2iun1dif1 11650 fprod2dlemstep 11792 fprodcom2fi 11796 fprodsplitsn 11803 fprodsplit1f 11804 phicl2 12395 lgsquadlem2 15366 |
| Copyright terms: Public domain | W3C validator |