| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snfig | GIF version | ||
| Description: A singleton is finite. For the proper class case, see snprc 3699. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6613 | . . 3 ⊢ 1o ∈ ω | |
| 2 | ensn1g 6896 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 3 | breq2 4051 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
| 4 | 3 | rspcev 2878 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 5 | 1, 2, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 6 | isfi 6859 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
| 7 | 5, 6 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∃wrex 2486 {csn 3634 class class class wbr 4047 ωcom 4642 1oc1o 6502 ≈ cen 6832 Fincfn 6834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-1o 6509 df-en 6835 df-fin 6837 |
| This theorem is referenced by: fiprc 6914 ssfiexmid 6980 domfiexmid 6982 diffitest 6991 unfiexmid 7022 prfidisj 7031 prfidceq 7032 tpfidisj 7033 ssfii 7083 infpwfidom 7313 hashsng 10950 fihashen1 10951 hashunsng 10959 hashprg 10960 hashdifsn 10971 hashdifpr 10972 hashxp 10978 fsumsplitsnun 11774 fsum2dlemstep 11789 fisumcom2 11793 fsumconst 11809 fsumge1 11816 fsum00 11817 hash2iun1dif1 11835 fprod2dlemstep 11977 fprodcom2fi 11981 fprodsplitsn 11988 fprodsplit1f 11989 phicl2 12580 lgsquadlem2 15599 |
| Copyright terms: Public domain | W3C validator |