| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snfig | GIF version | ||
| Description: A singleton is finite. For the proper class case, see snprc 3731. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6674 | . . 3 ⊢ 1o ∈ ω | |
| 2 | ensn1g 6957 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 3 | breq2 4087 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
| 4 | 3 | rspcev 2907 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 5 | 1, 2, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
| 6 | isfi 6920 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
| 7 | 5, 6 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 {csn 3666 class class class wbr 4083 ωcom 4682 1oc1o 6561 ≈ cen 6893 Fincfn 6895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-1o 6568 df-en 6896 df-fin 6898 |
| This theorem is referenced by: fiprc 6976 ssfiexmid 7046 domfiexmid 7048 diffitest 7057 unfiexmid 7088 prfidisj 7097 prfidceq 7098 tpfidisj 7099 ssfii 7149 infpwfidom 7384 hashsng 11028 fihashen1 11029 hashunsng 11037 hashprg 11038 hashdifsn 11049 hashdifpr 11050 hashxp 11056 fsumsplitsnun 11938 fsum2dlemstep 11953 fisumcom2 11957 fsumconst 11973 fsumge1 11980 fsum00 11981 hash2iun1dif1 11999 fprod2dlemstep 12141 fprodcom2fi 12145 fprodsplitsn 12152 fprodsplit1f 12153 phicl2 12744 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |