ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snfig GIF version

Theorem snfig 6701
Description: A singleton is finite. For the proper class case, see snprc 3583. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
snfig (𝐴𝑉 → {𝐴} ∈ Fin)

Proof of Theorem snfig
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1onn 6409 . . 3 1o ∈ ω
2 ensn1g 6684 . . 3 (𝐴𝑉 → {𝐴} ≈ 1o)
3 breq2 3928 . . . 4 (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o))
43rspcev 2784 . . 3 ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
51, 2, 4sylancr 410 . 2 (𝐴𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
6 isfi 6648 . 2 ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
75, 6sylibr 133 1 (𝐴𝑉 → {𝐴} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  wrex 2415  {csn 3522   class class class wbr 3924  ωcom 4499  1oc1o 6299  cen 6625  Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-1o 6306  df-en 6628  df-fin 6630
This theorem is referenced by:  fiprc  6702  ssfiexmid  6763  domfiexmid  6765  diffitest  6774  unfiexmid  6799  prfidisj  6808  tpfidisj  6809  ssfii  6855  infpwfidom  7047  hashsng  10537  fihashen1  10538  hashunsng  10546  hashprg  10547  hashdifsn  10558  hashdifpr  10559  hashxp  10565  fsumsplitsnun  11181  fsum2dlemstep  11196  fisumcom2  11200  fsumconst  11216  fsumge1  11223  fsum00  11224  hash2iun1dif1  11242  phicl2  11879
  Copyright terms: Public domain W3C validator