![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snfig | GIF version |
Description: A singleton is finite. For the proper class case, see snprc 3683. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6573 | . . 3 ⊢ 1o ∈ ω | |
2 | ensn1g 6851 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
3 | breq2 4033 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
4 | 3 | rspcev 2864 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
5 | 1, 2, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
6 | isfi 6815 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
7 | 5, 6 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∃wrex 2473 {csn 3618 class class class wbr 4029 ωcom 4622 1oc1o 6462 ≈ cen 6792 Fincfn 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-1o 6469 df-en 6795 df-fin 6797 |
This theorem is referenced by: fiprc 6869 ssfiexmid 6932 domfiexmid 6934 diffitest 6943 unfiexmid 6974 prfidisj 6983 tpfidisj 6984 ssfii 7033 infpwfidom 7258 hashsng 10869 fihashen1 10870 hashunsng 10878 hashprg 10879 hashdifsn 10890 hashdifpr 10891 hashxp 10897 fsumsplitsnun 11562 fsum2dlemstep 11577 fisumcom2 11581 fsumconst 11597 fsumge1 11604 fsum00 11605 hash2iun1dif1 11623 fprod2dlemstep 11765 fprodcom2fi 11769 fprodsplitsn 11776 fprodsplit1f 11777 phicl2 12352 |
Copyright terms: Public domain | W3C validator |