| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snfig | GIF version | ||
| Description: A singleton is finite. For the proper class case, see snprc 3687. (Contributed by Jim Kingdon, 13-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1onn 6578 | . . 3 ⊢ 1o ∈ ω | |
| 2 | ensn1g 6856 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
| 3 | breq2 4037 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
| 4 | 3 | rspcev 2868 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | 
| 5 | 1, 2, 4 | sylancr 414 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | 
| 6 | isfi 6820 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
| 7 | 5, 6 | sylibr 134 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 {csn 3622 class class class wbr 4033 ωcom 4626 1oc1o 6467 ≈ cen 6797 Fincfn 6799 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-1o 6474 df-en 6800 df-fin 6802 | 
| This theorem is referenced by: fiprc 6874 ssfiexmid 6937 domfiexmid 6939 diffitest 6948 unfiexmid 6979 prfidisj 6988 prfidceq 6989 tpfidisj 6990 ssfii 7040 infpwfidom 7265 hashsng 10890 fihashen1 10891 hashunsng 10899 hashprg 10900 hashdifsn 10911 hashdifpr 10912 hashxp 10918 fsumsplitsnun 11584 fsum2dlemstep 11599 fisumcom2 11603 fsumconst 11619 fsumge1 11626 fsum00 11627 hash2iun1dif1 11645 fprod2dlemstep 11787 fprodcom2fi 11791 fprodsplitsn 11798 fprodsplit1f 11799 phicl2 12382 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |