Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snfig | GIF version |
Description: A singleton is finite. For the proper class case, see snprc 3641. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
snfig | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6488 | . . 3 ⊢ 1o ∈ ω | |
2 | ensn1g 6763 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1o) | |
3 | breq2 3986 | . . . 4 ⊢ (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o)) | |
4 | 3 | rspcev 2830 | . . 3 ⊢ ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
5 | 1, 2, 4 | sylancr 411 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) |
6 | isfi 6727 | . 2 ⊢ ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥) | |
7 | 5, 6 | sylibr 133 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃wrex 2445 {csn 3576 class class class wbr 3982 ωcom 4567 1oc1o 6377 ≈ cen 6704 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-1o 6384 df-en 6707 df-fin 6709 |
This theorem is referenced by: fiprc 6781 ssfiexmid 6842 domfiexmid 6844 diffitest 6853 unfiexmid 6883 prfidisj 6892 tpfidisj 6893 ssfii 6939 infpwfidom 7154 hashsng 10711 fihashen1 10712 hashunsng 10720 hashprg 10721 hashdifsn 10732 hashdifpr 10733 hashxp 10739 fsumsplitsnun 11360 fsum2dlemstep 11375 fisumcom2 11379 fsumconst 11395 fsumge1 11402 fsum00 11403 hash2iun1dif1 11421 fprod2dlemstep 11563 fprodcom2fi 11567 fprodsplitsn 11574 fprodsplit1f 11575 phicl2 12146 |
Copyright terms: Public domain | W3C validator |