ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snfig GIF version

Theorem snfig 6771
Description: A singleton is finite. For the proper class case, see snprc 3635. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
snfig (𝐴𝑉 → {𝐴} ∈ Fin)

Proof of Theorem snfig
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1onn 6479 . . 3 1o ∈ ω
2 ensn1g 6754 . . 3 (𝐴𝑉 → {𝐴} ≈ 1o)
3 breq2 3980 . . . 4 (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o))
43rspcev 2825 . . 3 ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
51, 2, 4sylancr 411 . 2 (𝐴𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
6 isfi 6718 . 2 ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
75, 6sylibr 133 1 (𝐴𝑉 → {𝐴} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2135  wrex 2443  {csn 3570   class class class wbr 3976  ωcom 4561  1oc1o 6368  cen 6695  Fincfn 6697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-1o 6375  df-en 6698  df-fin 6700
This theorem is referenced by:  fiprc  6772  ssfiexmid  6833  domfiexmid  6835  diffitest  6844  unfiexmid  6874  prfidisj  6883  tpfidisj  6884  ssfii  6930  infpwfidom  7145  hashsng  10700  fihashen1  10701  hashunsng  10709  hashprg  10710  hashdifsn  10721  hashdifpr  10722  hashxp  10728  fsumsplitsnun  11346  fsum2dlemstep  11361  fisumcom2  11365  fsumconst  11381  fsumge1  11388  fsum00  11389  hash2iun1dif1  11407  fprod2dlemstep  11549  fprodcom2fi  11553  fprodsplitsn  11560  fprodsplit1f  11561  phicl2  12123
  Copyright terms: Public domain W3C validator