ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snfig GIF version

Theorem snfig 6868
Description: A singleton is finite. For the proper class case, see snprc 3683. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
snfig (𝐴𝑉 → {𝐴} ∈ Fin)

Proof of Theorem snfig
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1onn 6573 . . 3 1o ∈ ω
2 ensn1g 6851 . . 3 (𝐴𝑉 → {𝐴} ≈ 1o)
3 breq2 4033 . . . 4 (𝑥 = 1o → ({𝐴} ≈ 𝑥 ↔ {𝐴} ≈ 1o))
43rspcev 2864 . . 3 ((1o ∈ ω ∧ {𝐴} ≈ 1o) → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
51, 2, 4sylancr 414 . 2 (𝐴𝑉 → ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
6 isfi 6815 . 2 ({𝐴} ∈ Fin ↔ ∃𝑥 ∈ ω {𝐴} ≈ 𝑥)
75, 6sylibr 134 1 (𝐴𝑉 → {𝐴} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wrex 2473  {csn 3618   class class class wbr 4029  ωcom 4622  1oc1o 6462  cen 6792  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-1o 6469  df-en 6795  df-fin 6797
This theorem is referenced by:  fiprc  6869  ssfiexmid  6932  domfiexmid  6934  diffitest  6943  unfiexmid  6974  prfidisj  6983  tpfidisj  6984  ssfii  7033  infpwfidom  7258  hashsng  10869  fihashen1  10870  hashunsng  10878  hashprg  10879  hashdifsn  10890  hashdifpr  10891  hashxp  10897  fsumsplitsnun  11562  fsum2dlemstep  11577  fisumcom2  11581  fsumconst  11597  fsumge1  11604  fsum00  11605  hash2iun1dif1  11623  fprod2dlemstep  11765  fprodcom2fi  11769  fprodsplitsn  11776  fprodsplit1f  11777  phicl2  12352
  Copyright terms: Public domain W3C validator