Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnn0nninf | GIF version |
Description: A function from ℕ0 into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) |
Ref | Expression |
---|---|
fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
Ref | Expression |
---|---|
fnn0nninf | ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fxnn0nninf.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
2 | nnnninf 7090 | . . 3 ⊢ (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ ℕ∞) | |
3 | 1, 2 | fmpti 5637 | . 2 ⊢ 𝐹:ω⟶ℕ∞ |
4 | fxnn0nninf.g | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
5 | 4 | frechashgf1o 10363 | . . 3 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
6 | f1ocnv 5445 | . . 3 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
7 | f1of 5432 | . . 3 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
8 | 5, 6, 7 | mp2b 8 | . 2 ⊢ ◡𝐺:ℕ0⟶ω |
9 | fco 5353 | . 2 ⊢ ((𝐹:ω⟶ℕ∞ ∧ ◡𝐺:ℕ0⟶ω) → (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞) | |
10 | 3, 8, 9 | mp2an 423 | 1 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∅c0 3409 ifcif 3520 ↦ cmpt 4043 ωcom 4567 ◡ccnv 4603 ∘ ccom 4608 ⟶wf 5184 –1-1-onto→wf1o 5187 (class class class)co 5842 freccfrec 6358 1oc1o 6377 ℕ∞xnninf 7084 0cc0 7753 1c1 7754 + caddc 7756 ℕ0cn0 9114 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: fxnn0nninf 10373 inftonninf 10376 |
Copyright terms: Public domain | W3C validator |