ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0nninf GIF version

Theorem fnn0nninf 10314
Description: A function from 0 into . (Contributed by Jim Kingdon, 16-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
fxnn0nninf.f 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Assertion
Ref Expression
fnn0nninf (𝐹𝐺):ℕ0⟶ℕ
Distinct variable group:   𝑖,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑖,𝑛)   𝐺(𝑥,𝑖,𝑛)

Proof of Theorem fnn0nninf
StepHypRef Expression
1 fxnn0nninf.f . . 3 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
2 nnnninf 7054 . . 3 (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) ∈ ℕ)
31, 2fmpti 5612 . 2 𝐹:ω⟶ℕ
4 fxnn0nninf.g . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
54frechashgf1o 10305 . . 3 𝐺:ω–1-1-onto→ℕ0
6 f1ocnv 5420 . . 3 (𝐺:ω–1-1-onto→ℕ0𝐺:ℕ01-1-onto→ω)
7 f1of 5407 . . 3 (𝐺:ℕ01-1-onto→ω → 𝐺:ℕ0⟶ω)
85, 6, 7mp2b 8 . 2 𝐺:ℕ0⟶ω
9 fco 5328 . 2 ((𝐹:ω⟶ℕ𝐺:ℕ0⟶ω) → (𝐹𝐺):ℕ0⟶ℕ)
103, 8, 9mp2an 423 1 (𝐹𝐺):ℕ0⟶ℕ
Colors of variables: wff set class
Syntax hints:   = wceq 1332  c0 3390  ifcif 3501  cmpt 4021  ωcom 4543  ccnv 4578  ccom 4583  wf 5159  1-1-ontowf1o 5162  (class class class)co 5814  freccfrec 6327  1oc1o 6346  xnninf 7049  0cc0 7711  1c1 7712   + caddc 7714  0cn0 9069  cz 9146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-recs 6242  df-frec 6328  df-1o 6353  df-2o 6354  df-map 6584  df-nninf 7050  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419
This theorem is referenced by:  fxnn0nninf  10315  inftonninf  10318
  Copyright terms: Public domain W3C validator