| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnn0nninf | GIF version | ||
| Description: A function from ℕ0 into ℕ∞. (Contributed by Jim Kingdon, 16-Jul-2022.) |
| Ref | Expression |
|---|---|
| fxnn0nninf.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| fxnn0nninf.f | ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| Ref | Expression |
|---|---|
| fnn0nninf | ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fxnn0nninf.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ ω ↦ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) | |
| 2 | nnnninf 7281 | . . 3 ⊢ (𝑛 ∈ ω → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) ∈ ℕ∞) | |
| 3 | 1, 2 | fmpti 5780 | . 2 ⊢ 𝐹:ω⟶ℕ∞ |
| 4 | fxnn0nninf.g | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 5 | 4 | frechashgf1o 10637 | . . 3 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 6 | f1ocnv 5581 | . . 3 ⊢ (𝐺:ω–1-1-onto→ℕ0 → ◡𝐺:ℕ0–1-1-onto→ω) | |
| 7 | f1of 5568 | . . 3 ⊢ (◡𝐺:ℕ0–1-1-onto→ω → ◡𝐺:ℕ0⟶ω) | |
| 8 | 5, 6, 7 | mp2b 8 | . 2 ⊢ ◡𝐺:ℕ0⟶ω |
| 9 | fco 5485 | . 2 ⊢ ((𝐹:ω⟶ℕ∞ ∧ ◡𝐺:ℕ0⟶ω) → (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞) | |
| 10 | 3, 8, 9 | mp2an 426 | 1 ⊢ (𝐹 ∘ ◡𝐺):ℕ0⟶ℕ∞ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∅c0 3491 ifcif 3602 ↦ cmpt 4144 ωcom 4679 ◡ccnv 4715 ∘ ccom 4720 ⟶wf 5310 –1-1-onto→wf1o 5313 (class class class)co 5994 freccfrec 6526 1oc1o 6545 ℕ∞xnninf 7274 0cc0 7987 1c1 7988 + caddc 7990 ℕ0cn0 9357 ℤcz 9434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-recs 6441 df-frec 6527 df-1o 6552 df-2o 6553 df-map 6787 df-nninf 7275 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 |
| This theorem is referenced by: fxnn0nninf 10648 inftonninf 10651 |
| Copyright terms: Public domain | W3C validator |