Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvid GIF version

Theorem dvid 12841
 Description: Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Assertion
Ref Expression
dvid (ℂ D ( I ↾ ℂ)) = (ℂ × {1})

Proof of Theorem dvid
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 5405 . . . 4 ( I ↾ ℂ):ℂ–1-1-onto→ℂ
2 f1of 5367 . . . 4 (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ)
31, 2mp1i 10 . . 3 (⊤ → ( I ↾ ℂ):ℂ⟶ℂ)
4 simp2 982 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → 𝑧 ∈ ℂ)
5 simp1 981 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → 𝑥 ∈ ℂ)
64, 5subcld 8080 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → (𝑧𝑥) ∈ ℂ)
7 simp3 983 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → 𝑧 # 𝑥)
84, 5, 7subap0d 8413 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → (𝑧𝑥) # 0)
9 fvresi 5613 . . . . . . 7 (𝑧 ∈ ℂ → (( I ↾ ℂ)‘𝑧) = 𝑧)
10 fvresi 5613 . . . . . . 7 (𝑥 ∈ ℂ → (( I ↾ ℂ)‘𝑥) = 𝑥)
119, 10oveqan12rd 5794 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧𝑥))
12113adant3 1001 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧𝑥))
136, 8, 12diveqap1bd 8602 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧𝑥)) = 1)
1413adantl 275 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧𝑥)) = 1)
15 ax-1cn 7720 . . 3 1 ∈ ℂ
163, 14, 15dvidlemap 12839 . 2 (⊤ → (ℂ D ( I ↾ ℂ)) = (ℂ × {1}))
1716mptru 1340 1 (ℂ D ( I ↾ ℂ)) = (ℂ × {1})
 Colors of variables: wff set class Syntax hints:   ∧ w3a 962   = wceq 1331  ⊤wtru 1332   ∈ wcel 1480  {csn 3527   class class class wbr 3929   I cid 4210   × cxp 4537   ↾ cres 4541  ⟶wf 5119  –1-1-onto→wf1o 5122  ‘cfv 5123  (class class class)co 5774  ℂcc 7625  1c1 7628   − cmin 7940   # cap 8350   / cdiv 8439   D cdv 12803 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-rest 12132  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-met 12168  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-ntr 12275  df-cn 12367  df-cnp 12368  df-cncf 12737  df-limced 12804  df-dvap 12805 This theorem is referenced by:  dvexp  12854  dvmptidcn  12857
 Copyright terms: Public domain W3C validator