| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvid | GIF version | ||
| Description: Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.) |
| Ref | Expression |
|---|---|
| dvid | ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 5611 | . . . 4 ⊢ ( I ↾ ℂ):ℂ–1-1-onto→ℂ | |
| 2 | f1of 5572 | . . . 4 ⊢ (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ) | |
| 3 | 1, 2 | mp1i 10 | . . 3 ⊢ (⊤ → ( I ↾ ℂ):ℂ⟶ℂ) |
| 4 | simp2 1022 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → 𝑧 ∈ ℂ) | |
| 5 | simp1 1021 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → 𝑥 ∈ ℂ) | |
| 6 | 4, 5 | subcld 8457 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → (𝑧 − 𝑥) ∈ ℂ) |
| 7 | simp3 1023 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → 𝑧 # 𝑥) | |
| 8 | 4, 5, 7 | subap0d 8791 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → (𝑧 − 𝑥) # 0) |
| 9 | fvresi 5832 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → (( I ↾ ℂ)‘𝑧) = 𝑧) | |
| 10 | fvresi 5832 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (( I ↾ ℂ)‘𝑥) = 𝑥) | |
| 11 | 9, 10 | oveqan12rd 6021 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧 − 𝑥)) |
| 12 | 11 | 3adant3 1041 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧 − 𝑥)) |
| 13 | 6, 8, 12 | diveqap1bd 8983 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧 − 𝑥)) = 1) |
| 14 | 13 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧 − 𝑥)) = 1) |
| 15 | ax-1cn 8092 | . . 3 ⊢ 1 ∈ ℂ | |
| 16 | 3, 14, 15 | dvidlemap 15365 | . 2 ⊢ (⊤ → (ℂ D ( I ↾ ℂ)) = (ℂ × {1})) |
| 17 | 16 | mptru 1404 | 1 ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 1002 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 {csn 3666 class class class wbr 4083 I cid 4379 × cxp 4717 ↾ cres 4721 ⟶wf 5314 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6001 ℂcc 7997 1c1 8000 − cmin 8317 # cap 8728 / cdiv 8819 D cdv 15329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-map 6797 df-pm 6798 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-xneg 9968 df-xadd 9969 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-rest 13274 df-topgen 13293 df-psmet 14507 df-xmet 14508 df-met 14509 df-bl 14510 df-mopn 14511 df-top 14672 df-topon 14685 df-bases 14717 df-ntr 14770 df-cn 14862 df-cnp 14863 df-cncf 15245 df-limced 15330 df-dvap 15331 |
| This theorem is referenced by: dvexp 15385 dvmptidcn 15388 dvmptid 15390 |
| Copyright terms: Public domain | W3C validator |