ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprlem GIF version

Theorem ltaprlem 7713
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
Assertion
Ref Expression
ltaprlem (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7708 . . . 4 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
21adantr 276 . . 3 ((𝐴<P 𝐵𝐶P) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3 simplr 528 . . . . . 6 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐶P)
4 ltrelpr 7600 . . . . . . . . . 10 <P ⊆ (P × P)
54brel 4725 . . . . . . . . 9 (𝐴<P 𝐵 → (𝐴P𝐵P))
65simpld 112 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
76adantr 276 . . . . . . 7 ((𝐴<P 𝐵𝐶P) → 𝐴P)
87adantr 276 . . . . . 6 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐴P)
9 addclpr 7632 . . . . . 6 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
103, 8, 9syl2anc 411 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴) ∈ P)
11 simprl 529 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝑥P)
12 ltaddpr 7692 . . . . 5 (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
1310, 11, 12syl2anc 411 . . . 4 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
14 addassprg 7674 . . . . . 6 ((𝐶P𝐴P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
153, 8, 11, 14syl3anc 1249 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
16 oveq2 5942 . . . . . 6 ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
1716ad2antll 491 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
1815, 17eqtrd 2237 . . . 4 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
1913, 18breqtrd 4069 . . 3 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
202, 19rexlimddv 2627 . 2 ((𝐴<P 𝐵𝐶P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2120expcom 116 1 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  (class class class)co 5934  Pcnp 7386   +P cpp 7388  <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-iplp 7563  df-iltp 7565
This theorem is referenced by:  ltaprg  7714
  Copyright terms: Public domain W3C validator