| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltaprlem | GIF version | ||
| Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexpri 7796 | . . . 4 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| 3 | simplr 528 | . . . . . 6 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐶 ∈ P) | |
| 4 | ltrelpr 7688 | . . . . . . . . . 10 ⊢ <P ⊆ (P × P) | |
| 5 | 4 | brel 4770 | . . . . . . . . 9 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 6 | 5 | simpld 112 | . . . . . . . 8 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
| 7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → 𝐴 ∈ P) |
| 8 | 7 | adantr 276 | . . . . . 6 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐴 ∈ P) |
| 9 | addclpr 7720 | . . . . . 6 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
| 10 | 3, 8, 9 | syl2anc 411 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴) ∈ P) |
| 11 | simprl 529 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝑥 ∈ P) | |
| 12 | ltaddpr 7780 | . . . . 5 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
| 13 | 10, 11, 12 | syl2anc 411 | . . . 4 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) |
| 14 | addassprg 7762 | . . . . . 6 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P ∧ 𝑥 ∈ P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))) | |
| 15 | 3, 8, 11, 14 | syl3anc 1271 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))) |
| 16 | oveq2 6008 | . . . . . 6 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
| 17 | 16 | ad2antll 491 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) |
| 18 | 15, 17 | eqtrd 2262 | . . . 4 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
| 19 | 13, 18 | breqtrd 4108 | . . 3 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) |
| 20 | 2, 19 | rexlimddv 2653 | . 2 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) |
| 21 | 20 | expcom 116 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4082 (class class class)co 6000 Pcnp 7474 +P cpp 7476 <P cltp 7478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-iplp 7651 df-iltp 7653 |
| This theorem is referenced by: ltaprg 7802 |
| Copyright terms: Public domain | W3C validator |