| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltaprlem | GIF version | ||
| Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) |
| Ref | Expression |
|---|---|
| ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexpri 7697 | . . . 4 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| 3 | simplr 528 | . . . . . 6 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐶 ∈ P) | |
| 4 | ltrelpr 7589 | . . . . . . . . . 10 ⊢ <P ⊆ (P × P) | |
| 5 | 4 | brel 4716 | . . . . . . . . 9 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 6 | 5 | simpld 112 | . . . . . . . 8 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
| 7 | 6 | adantr 276 | . . . . . . 7 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → 𝐴 ∈ P) |
| 8 | 7 | adantr 276 | . . . . . 6 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐴 ∈ P) |
| 9 | addclpr 7621 | . . . . . 6 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
| 10 | 3, 8, 9 | syl2anc 411 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴) ∈ P) |
| 11 | simprl 529 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝑥 ∈ P) | |
| 12 | ltaddpr 7681 | . . . . 5 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
| 13 | 10, 11, 12 | syl2anc 411 | . . . 4 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) |
| 14 | addassprg 7663 | . . . . . 6 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P ∧ 𝑥 ∈ P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))) | |
| 15 | 3, 8, 11, 14 | syl3anc 1249 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))) |
| 16 | oveq2 5933 | . . . . . 6 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
| 17 | 16 | ad2antll 491 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) |
| 18 | 15, 17 | eqtrd 2229 | . . . 4 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
| 19 | 13, 18 | breqtrd 4060 | . . 3 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) |
| 20 | 2, 19 | rexlimddv 2619 | . 2 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) |
| 21 | 20 | expcom 116 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 class class class wbr 4034 (class class class)co 5925 Pcnp 7375 +P cpp 7377 <P cltp 7379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-iplp 7552 df-iltp 7554 |
| This theorem is referenced by: ltaprg 7703 |
| Copyright terms: Public domain | W3C validator |