ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprlem GIF version

Theorem ltaprlem 7538
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
Assertion
Ref Expression
ltaprlem (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7533 . . . 4 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
21adantr 274 . . 3 ((𝐴<P 𝐵𝐶P) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3 simplr 520 . . . . . 6 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐶P)
4 ltrelpr 7425 . . . . . . . . . 10 <P ⊆ (P × P)
54brel 4638 . . . . . . . . 9 (𝐴<P 𝐵 → (𝐴P𝐵P))
65simpld 111 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
76adantr 274 . . . . . . 7 ((𝐴<P 𝐵𝐶P) → 𝐴P)
87adantr 274 . . . . . 6 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐴P)
9 addclpr 7457 . . . . . 6 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
103, 8, 9syl2anc 409 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴) ∈ P)
11 simprl 521 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝑥P)
12 ltaddpr 7517 . . . . 5 (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
1310, 11, 12syl2anc 409 . . . 4 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
14 addassprg 7499 . . . . . 6 ((𝐶P𝐴P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
153, 8, 11, 14syl3anc 1220 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
16 oveq2 5832 . . . . . 6 ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
1716ad2antll 483 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
1815, 17eqtrd 2190 . . . 4 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
1913, 18breqtrd 3990 . . 3 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
202, 19rexlimddv 2579 . 2 ((𝐴<P 𝐵𝐶P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2120expcom 115 1 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  wrex 2436   class class class wbr 3965  (class class class)co 5824  Pcnp 7211   +P cpp 7213  <P cltp 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-1o 6363  df-2o 6364  df-oadd 6367  df-omul 6368  df-er 6480  df-ec 6482  df-qs 6486  df-ni 7224  df-pli 7225  df-mi 7226  df-lti 7227  df-plpq 7264  df-mpq 7265  df-enq 7267  df-nqqs 7268  df-plqqs 7269  df-mqqs 7270  df-1nqqs 7271  df-rq 7272  df-ltnqqs 7273  df-enq0 7344  df-nq0 7345  df-0nq0 7346  df-plq0 7347  df-mq0 7348  df-inp 7386  df-iplp 7388  df-iltp 7390
This theorem is referenced by:  ltaprg  7539
  Copyright terms: Public domain W3C validator