Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltaprlem | GIF version |
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) |
Ref | Expression |
---|---|
ltaprlem | ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexpri 7533 | . . . 4 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
3 | simplr 520 | . . . . . 6 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐶 ∈ P) | |
4 | ltrelpr 7425 | . . . . . . . . . 10 ⊢ <P ⊆ (P × P) | |
5 | 4 | brel 4638 | . . . . . . . . 9 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
6 | 5 | simpld 111 | . . . . . . . 8 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
7 | 6 | adantr 274 | . . . . . . 7 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → 𝐴 ∈ P) |
8 | 7 | adantr 274 | . . . . . 6 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐴 ∈ P) |
9 | addclpr 7457 | . . . . . 6 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P) → (𝐶 +P 𝐴) ∈ P) | |
10 | 3, 8, 9 | syl2anc 409 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴) ∈ P) |
11 | simprl 521 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝑥 ∈ P) | |
12 | ltaddpr 7517 | . . . . 5 ⊢ (((𝐶 +P 𝐴) ∈ P ∧ 𝑥 ∈ P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) | |
13 | 10, 11, 12 | syl2anc 409 | . . . 4 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥)) |
14 | addassprg 7499 | . . . . . 6 ⊢ ((𝐶 ∈ P ∧ 𝐴 ∈ P ∧ 𝑥 ∈ P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))) | |
15 | 3, 8, 11, 14 | syl3anc 1220 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥))) |
16 | oveq2 5832 | . . . . . 6 ⊢ ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) | |
17 | 16 | ad2antll 483 | . . . . 5 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵)) |
18 | 15, 17 | eqtrd 2190 | . . . 4 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵)) |
19 | 13, 18 | breqtrd 3990 | . . 3 ⊢ (((𝐴<P 𝐵 ∧ 𝐶 ∈ P) ∧ (𝑥 ∈ P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) |
20 | 2, 19 | rexlimddv 2579 | . 2 ⊢ ((𝐴<P 𝐵 ∧ 𝐶 ∈ P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)) |
21 | 20 | expcom 115 | 1 ⊢ (𝐶 ∈ P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 class class class wbr 3965 (class class class)co 5824 Pcnp 7211 +P cpp 7213 <P cltp 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-1o 6363 df-2o 6364 df-oadd 6367 df-omul 6368 df-er 6480 df-ec 6482 df-qs 6486 df-ni 7224 df-pli 7225 df-mi 7226 df-lti 7227 df-plpq 7264 df-mpq 7265 df-enq 7267 df-nqqs 7268 df-plqqs 7269 df-mqqs 7270 df-1nqqs 7271 df-rq 7272 df-ltnqqs 7273 df-enq0 7344 df-nq0 7345 df-0nq0 7346 df-plq0 7347 df-mq0 7348 df-inp 7386 df-iplp 7388 df-iltp 7390 |
This theorem is referenced by: ltaprg 7539 |
Copyright terms: Public domain | W3C validator |