ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprlem GIF version

Theorem ltaprlem 7327
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
Assertion
Ref Expression
ltaprlem (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))

Proof of Theorem ltaprlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7322 . . . 4 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
21adantr 272 . . 3 ((𝐴<P 𝐵𝐶P) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
3 simplr 500 . . . . . 6 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐶P)
4 ltrelpr 7214 . . . . . . . . . 10 <P ⊆ (P × P)
54brel 4529 . . . . . . . . 9 (𝐴<P 𝐵 → (𝐴P𝐵P))
65simpld 111 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
76adantr 272 . . . . . . 7 ((𝐴<P 𝐵𝐶P) → 𝐴P)
87adantr 272 . . . . . 6 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝐴P)
9 addclpr 7246 . . . . . 6 ((𝐶P𝐴P) → (𝐶 +P 𝐴) ∈ P)
103, 8, 9syl2anc 406 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴) ∈ P)
11 simprl 501 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → 𝑥P)
12 ltaddpr 7306 . . . . 5 (((𝐶 +P 𝐴) ∈ P𝑥P) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
1310, 11, 12syl2anc 406 . . . 4 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P ((𝐶 +P 𝐴) +P 𝑥))
14 addassprg 7288 . . . . . 6 ((𝐶P𝐴P𝑥P) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
153, 8, 11, 14syl3anc 1184 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P (𝐴 +P 𝑥)))
16 oveq2 5714 . . . . . 6 ((𝐴 +P 𝑥) = 𝐵 → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
1716ad2antll 478 . . . . 5 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P (𝐴 +P 𝑥)) = (𝐶 +P 𝐵))
1815, 17eqtrd 2132 . . . 4 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → ((𝐶 +P 𝐴) +P 𝑥) = (𝐶 +P 𝐵))
1913, 18breqtrd 3899 . . 3 (((𝐴<P 𝐵𝐶P) ∧ (𝑥P ∧ (𝐴 +P 𝑥) = 𝐵)) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
202, 19rexlimddv 2513 . 2 ((𝐴<P 𝐵𝐶P) → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵))
2120expcom 115 1 (𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  wrex 2376   class class class wbr 3875  (class class class)co 5706  Pcnp 7000   +P cpp 7002  <P cltp 7004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-iplp 7177  df-iltp 7179
This theorem is referenced by:  ltaprg  7328
  Copyright terms: Public domain W3C validator