ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prplnqu GIF version

Theorem prplnqu 7732
Description: Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
Hypotheses
Ref Expression
prplnqu.x (𝜑𝑋P)
prplnqu.q (𝜑𝑄Q)
prplnqu.sum (𝜑𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
Assertion
Ref Expression
prplnqu (𝜑 → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
Distinct variable groups:   𝐴,𝑙,𝑢   𝑦,𝐴   𝑄,𝑙,𝑢   𝑦,𝑄   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)   𝑋(𝑢,𝑙)

Proof of Theorem prplnqu
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prplnqu.q . . . . . . . 8 (𝜑𝑄Q)
2 nqprlu 7659 . . . . . . . 8 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
31, 2syl 14 . . . . . . 7 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
4 prplnqu.x . . . . . . 7 (𝜑𝑋P)
5 ltaddpr 7709 . . . . . . 7 ((⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P𝑋P) → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ +P 𝑋))
63, 4, 5syl2anc 411 . . . . . 6 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P (⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ +P 𝑋))
7 addcomprg 7690 . . . . . . 7 ((⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P𝑋P) → (⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ +P 𝑋) = (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
83, 4, 7syl2anc 411 . . . . . 6 (𝜑 → (⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ +P 𝑋) = (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
96, 8breqtrd 4069 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
10 prplnqu.sum . . . . . 6 (𝜑𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
11 addclpr 7649 . . . . . . . . 9 ((𝑋P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
124, 3, 11syl2anc 411 . . . . . . . 8 (𝜑 → (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
13 prop 7587 . . . . . . . . 9 ((𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)), (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))⟩ ∈ P)
14 elprnqu 7594 . . . . . . . . 9 ((⟨(1st ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)), (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))⟩ ∈ P𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))) → 𝐴Q)
1513, 14sylan 283 . . . . . . . 8 (((𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))) → 𝐴Q)
1612, 10, 15syl2anc 411 . . . . . . 7 (𝜑𝐴Q)
17 nqpru 7664 . . . . . . 7 ((𝐴Q ∧ (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P) → (𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1816, 12, 17syl2anc 411 . . . . . 6 (𝜑 → (𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1910, 18mpbid 147 . . . . 5 (𝜑 → (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
20 ltsopr 7708 . . . . . 6 <P Or P
21 ltrelpr 7617 . . . . . 6 <P ⊆ (P × P)
2220, 21sotri 5077 . . . . 5 ((⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∧ (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
239, 19, 22syl2anc 411 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
24 ltnqpr 7705 . . . . 5 ((𝑄Q𝐴Q) → (𝑄 <Q 𝐴 ↔ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
251, 16, 24syl2anc 411 . . . 4 (𝜑 → (𝑄 <Q 𝐴 ↔ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
2623, 25mpbird 167 . . 3 (𝜑𝑄 <Q 𝐴)
27 ltexnqi 7521 . . 3 (𝑄 <Q 𝐴 → ∃𝑧Q (𝑄 +Q 𝑧) = 𝐴)
2826, 27syl 14 . 2 (𝜑 → ∃𝑧Q (𝑄 +Q 𝑧) = 𝐴)
2919adantr 276 . . . . . 6 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
301adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → 𝑄Q)
31 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → 𝑧Q)
32 addcomnqg 7493 . . . . . . . . . 10 ((𝑄Q𝑧Q) → (𝑄 +Q 𝑧) = (𝑧 +Q 𝑄))
3330, 31, 32syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → (𝑄 +Q 𝑧) = (𝑧 +Q 𝑄))
34 simprr 531 . . . . . . . . 9 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → (𝑄 +Q 𝑧) = 𝐴)
3533, 34eqtr3d 2239 . . . . . . . 8 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → (𝑧 +Q 𝑄) = 𝐴)
36 breq2 4047 . . . . . . . . . 10 ((𝑧 +Q 𝑄) = 𝐴 → (𝑙 <Q (𝑧 +Q 𝑄) ↔ 𝑙 <Q 𝐴))
3736abbidv 2322 . . . . . . . . 9 ((𝑧 +Q 𝑄) = 𝐴 → {𝑙𝑙 <Q (𝑧 +Q 𝑄)} = {𝑙𝑙 <Q 𝐴})
38 breq1 4046 . . . . . . . . . 10 ((𝑧 +Q 𝑄) = 𝐴 → ((𝑧 +Q 𝑄) <Q 𝑢𝐴 <Q 𝑢))
3938abbidv 2322 . . . . . . . . 9 ((𝑧 +Q 𝑄) = 𝐴 → {𝑢 ∣ (𝑧 +Q 𝑄) <Q 𝑢} = {𝑢𝐴 <Q 𝑢})
4037, 39opeq12d 3826 . . . . . . . 8 ((𝑧 +Q 𝑄) = 𝐴 → ⟨{𝑙𝑙 <Q (𝑧 +Q 𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
4135, 40syl 14 . . . . . . 7 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → ⟨{𝑙𝑙 <Q (𝑧 +Q 𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
42 addnqpr 7673 . . . . . . . 8 ((𝑧Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑧 +Q 𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
4331, 30, 42syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → ⟨{𝑙𝑙 <Q (𝑧 +Q 𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
4441, 43eqtr3d 2239 . . . . . 6 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
4529, 44breqtrd 4069 . . . . 5 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
46 ltaprg 7731 . . . . . . 7 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
4746adantl 277 . . . . . 6 (((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
484adantr 276 . . . . . 6 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → 𝑋P)
49 nqprlu 7659 . . . . . . 7 (𝑧Q → ⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ ∈ P)
5031, 49syl 14 . . . . . 6 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → ⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ ∈ P)
5130, 2syl 14 . . . . . 6 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
52 addcomprg 7690 . . . . . . 7 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5352adantl 277 . . . . . 6 (((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
5447, 48, 50, 51, 53caovord2d 6115 . . . . 5 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → (𝑋<P ⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ ↔ (𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
5545, 54mpbird 167 . . . 4 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → 𝑋<P ⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩)
56 nqpru 7664 . . . . 5 ((𝑧Q𝑋P) → (𝑧 ∈ (2nd𝑋) ↔ 𝑋<P ⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩))
5731, 48, 56syl2anc 411 . . . 4 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → (𝑧 ∈ (2nd𝑋) ↔ 𝑋<P ⟨{𝑙𝑙 <Q 𝑧}, {𝑢𝑧 <Q 𝑢}⟩))
5855, 57mpbird 167 . . 3 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → 𝑧 ∈ (2nd𝑋))
59 oveq1 5950 . . . . 5 (𝑦 = 𝑧 → (𝑦 +Q 𝑄) = (𝑧 +Q 𝑄))
6059eqeq1d 2213 . . . 4 (𝑦 = 𝑧 → ((𝑦 +Q 𝑄) = 𝐴 ↔ (𝑧 +Q 𝑄) = 𝐴))
6160rspcev 2876 . . 3 ((𝑧 ∈ (2nd𝑋) ∧ (𝑧 +Q 𝑄) = 𝐴) → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
6258, 35, 61syl2anc 411 . 2 ((𝜑 ∧ (𝑧Q ∧ (𝑄 +Q 𝑧) = 𝐴)) → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
6328, 62rexlimddv 2627 1 (𝜑 → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  {cab 2190  wrex 2484  cop 3635   class class class wbr 4043  cfv 5270  (class class class)co 5943  1st c1st 6223  2nd c2nd 6224  Qcnq 7392   +Q cplq 7394   <Q cltq 7397  Pcnp 7403   +P cpp 7405  <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-iplp 7580  df-iltp 7582
This theorem is referenced by:  caucvgprprlemexbt  7818
  Copyright terms: Public domain W3C validator