| Step | Hyp | Ref
| Expression |
| 1 | | prplnqu.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ Q) |
| 2 | | nqprlu 7614 |
. . . . . . . 8
⊢ (𝑄 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
| 3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
| 4 | | prplnqu.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ P) |
| 5 | | ltaddpr 7664 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P
∧ 𝑋 ∈
P) → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋)) |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋)) |
| 7 | | addcomprg 7645 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P
∧ 𝑋 ∈
P) → (〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋) = (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
| 8 | 3, 4, 7 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋) = (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
| 9 | 6, 8 | breqtrd 4059 |
. . . . 5
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
| 10 | | prplnqu.sum |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (2nd ‘(𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
| 11 | | addclpr 7604 |
. . . . . . . . 9
⊢ ((𝑋 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P)
→ (𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) |
| 12 | 4, 3, 11 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) |
| 13 | | prop 7542 |
. . . . . . . . 9
⊢ ((𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P
→ 〈(1st ‘(𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)), (2nd
‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))〉 ∈
P) |
| 14 | | elprnqu 7549 |
. . . . . . . . 9
⊢
((〈(1st ‘(𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)), (2nd
‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))〉 ∈
P ∧ 𝐴
∈ (2nd ‘(𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) → 𝐴 ∈
Q) |
| 15 | 13, 14 | sylan 283 |
. . . . . . . 8
⊢ (((𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P
∧ 𝐴 ∈
(2nd ‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) → 𝐴 ∈
Q) |
| 16 | 12, 10, 15 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ Q) |
| 17 | | nqpru 7619 |
. . . . . . 7
⊢ ((𝐴 ∈ Q ∧
(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P)
→ (𝐴 ∈
(2nd ‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
| 18 | 16, 12, 17 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ (2nd ‘(𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
| 19 | 10, 18 | mpbid 147 |
. . . . 5
⊢ (𝜑 → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
| 20 | | ltsopr 7663 |
. . . . . 6
⊢
<P Or P |
| 21 | | ltrelpr 7572 |
. . . . . 6
⊢
<P ⊆ (P ×
P) |
| 22 | 20, 21 | sotri 5065 |
. . . . 5
⊢
((〈{𝑙 ∣
𝑙
<Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∧ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
| 23 | 9, 19, 22 | syl2anc 411 |
. . . 4
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
| 24 | | ltnqpr 7660 |
. . . . 5
⊢ ((𝑄 ∈ Q ∧
𝐴 ∈ Q)
→ (𝑄
<Q 𝐴 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
| 25 | 1, 16, 24 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑄 <Q 𝐴 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
| 26 | 23, 25 | mpbird 167 |
. . 3
⊢ (𝜑 → 𝑄 <Q 𝐴) |
| 27 | | ltexnqi 7476 |
. . 3
⊢ (𝑄 <Q
𝐴 → ∃𝑧 ∈ Q (𝑄 +Q
𝑧) = 𝐴) |
| 28 | 26, 27 | syl 14 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ Q (𝑄 +Q 𝑧) = 𝐴) |
| 29 | 19 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
| 30 | 1 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑄 ∈ Q) |
| 31 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑧 ∈ Q) |
| 32 | | addcomnqg 7448 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑄
+Q 𝑧) = (𝑧 +Q 𝑄)) |
| 33 | 30, 31, 32 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑄 +Q 𝑧) = (𝑧 +Q 𝑄)) |
| 34 | | simprr 531 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑄 +Q 𝑧) = 𝐴) |
| 35 | 33, 34 | eqtr3d 2231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑧 +Q 𝑄) = 𝐴) |
| 36 | | breq2 4037 |
. . . . . . . . . 10
⊢ ((𝑧 +Q
𝑄) = 𝐴 → (𝑙 <Q (𝑧 +Q
𝑄) ↔ 𝑙 <Q
𝐴)) |
| 37 | 36 | abbidv 2314 |
. . . . . . . . 9
⊢ ((𝑧 +Q
𝑄) = 𝐴 → {𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)} = {𝑙 ∣ 𝑙 <Q 𝐴}) |
| 38 | | breq1 4036 |
. . . . . . . . . 10
⊢ ((𝑧 +Q
𝑄) = 𝐴 → ((𝑧 +Q 𝑄) <Q
𝑢 ↔ 𝐴 <Q 𝑢)) |
| 39 | 38 | abbidv 2314 |
. . . . . . . . 9
⊢ ((𝑧 +Q
𝑄) = 𝐴 → {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢} = {𝑢 ∣ 𝐴 <Q 𝑢}) |
| 40 | 37, 39 | opeq12d 3816 |
. . . . . . . 8
⊢ ((𝑧 +Q
𝑄) = 𝐴 → 〈{𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
| 41 | 35, 40 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
| 42 | | addnqpr 7628 |
. . . . . . . 8
⊢ ((𝑧 ∈ Q ∧
𝑄 ∈ Q)
→ 〈{𝑙 ∣
𝑙
<Q (𝑧 +Q 𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
| 43 | 31, 30, 42 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
| 44 | 41, 43 | eqtr3d 2231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
| 45 | 29, 44 | breqtrd 4059 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
(〈{𝑙 ∣ 𝑙 <Q
𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
| 46 | | ltaprg 7686 |
. . . . . . 7
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
| 47 | 46 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
| 48 | 4 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑋 ∈ P) |
| 49 | | nqprlu 7614 |
. . . . . . 7
⊢ (𝑧 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉 ∈
P) |
| 50 | 31, 49 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉 ∈
P) |
| 51 | 30, 2 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
| 52 | | addcomprg 7645 |
. . . . . . 7
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 53 | 52 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
| 54 | 47, 48, 50, 51, 53 | caovord2d 6093 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉 ↔ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
(〈{𝑙 ∣ 𝑙 <Q
𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
| 55 | 45, 54 | mpbird 167 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉) |
| 56 | | nqpru 7619 |
. . . . 5
⊢ ((𝑧 ∈ Q ∧
𝑋 ∈ P)
→ (𝑧 ∈
(2nd ‘𝑋)
↔ 𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉)) |
| 57 | 31, 48, 56 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑧 ∈ (2nd ‘𝑋) ↔ 𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉)) |
| 58 | 55, 57 | mpbird 167 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑧 ∈ (2nd ‘𝑋)) |
| 59 | | oveq1 5929 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑦 +Q 𝑄) = (𝑧 +Q 𝑄)) |
| 60 | 59 | eqeq1d 2205 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑦 +Q 𝑄) = 𝐴 ↔ (𝑧 +Q 𝑄) = 𝐴)) |
| 61 | 60 | rspcev 2868 |
. . 3
⊢ ((𝑧 ∈ (2nd
‘𝑋) ∧ (𝑧 +Q
𝑄) = 𝐴) → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) |
| 62 | 58, 35, 61 | syl2anc 411 |
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) |
| 63 | 28, 62 | rexlimddv 2619 |
1
⊢ (𝜑 → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) |