Step | Hyp | Ref
| Expression |
1 | | prplnqu.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ Q) |
2 | | nqprlu 7509 |
. . . . . . . 8
⊢ (𝑄 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
4 | | prplnqu.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ P) |
5 | | ltaddpr 7559 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P
∧ 𝑋 ∈
P) → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋)) |
6 | 3, 4, 5 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
(〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋)) |
7 | | addcomprg 7540 |
. . . . . . 7
⊢
((〈{𝑙 ∣
𝑙
<Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P
∧ 𝑋 ∈
P) → (〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋) = (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
8 | 3, 4, 7 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉
+P 𝑋) = (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
9 | 6, 8 | breqtrd 4015 |
. . . . 5
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
10 | | prplnqu.sum |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (2nd ‘(𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
11 | | addclpr 7499 |
. . . . . . . . 9
⊢ ((𝑋 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P)
→ (𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) |
12 | 4, 3, 11 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) |
13 | | prop 7437 |
. . . . . . . . 9
⊢ ((𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P
→ 〈(1st ‘(𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)), (2nd
‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))〉 ∈
P) |
14 | | elprnqu 7444 |
. . . . . . . . 9
⊢
((〈(1st ‘(𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)), (2nd
‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))〉 ∈
P ∧ 𝐴
∈ (2nd ‘(𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) → 𝐴 ∈
Q) |
15 | 13, 14 | sylan 281 |
. . . . . . . 8
⊢ (((𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P
∧ 𝐴 ∈
(2nd ‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) → 𝐴 ∈
Q) |
16 | 12, 10, 15 | syl2anc 409 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ Q) |
17 | | nqpru 7514 |
. . . . . . 7
⊢ ((𝐴 ∈ Q ∧
(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P)
→ (𝐴 ∈
(2nd ‘(𝑋
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
18 | 16, 12, 17 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ (2nd ‘(𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
19 | 10, 18 | mpbid 146 |
. . . . 5
⊢ (𝜑 → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
20 | | ltsopr 7558 |
. . . . . 6
⊢
<P Or P |
21 | | ltrelpr 7467 |
. . . . . 6
⊢
<P ⊆ (P ×
P) |
22 | 20, 21 | sotri 5006 |
. . . . 5
⊢
((〈{𝑙 ∣
𝑙
<Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∧ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
23 | 9, 19, 22 | syl2anc 409 |
. . . 4
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
24 | | ltnqpr 7555 |
. . . . 5
⊢ ((𝑄 ∈ Q ∧
𝐴 ∈ Q)
→ (𝑄
<Q 𝐴 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
25 | 1, 16, 24 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑄 <Q 𝐴 ↔ 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
26 | 23, 25 | mpbird 166 |
. . 3
⊢ (𝜑 → 𝑄 <Q 𝐴) |
27 | | ltexnqi 7371 |
. . 3
⊢ (𝑄 <Q
𝐴 → ∃𝑧 ∈ Q (𝑄 +Q
𝑧) = 𝐴) |
28 | 26, 27 | syl 14 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ Q (𝑄 +Q 𝑧) = 𝐴) |
29 | 19 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
30 | 1 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑄 ∈ Q) |
31 | | simprl 526 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑧 ∈ Q) |
32 | | addcomnqg 7343 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑄
+Q 𝑧) = (𝑧 +Q 𝑄)) |
33 | 30, 31, 32 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑄 +Q 𝑧) = (𝑧 +Q 𝑄)) |
34 | | simprr 527 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑄 +Q 𝑧) = 𝐴) |
35 | 33, 34 | eqtr3d 2205 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑧 +Q 𝑄) = 𝐴) |
36 | | breq2 3993 |
. . . . . . . . . 10
⊢ ((𝑧 +Q
𝑄) = 𝐴 → (𝑙 <Q (𝑧 +Q
𝑄) ↔ 𝑙 <Q
𝐴)) |
37 | 36 | abbidv 2288 |
. . . . . . . . 9
⊢ ((𝑧 +Q
𝑄) = 𝐴 → {𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)} = {𝑙 ∣ 𝑙 <Q 𝐴}) |
38 | | breq1 3992 |
. . . . . . . . . 10
⊢ ((𝑧 +Q
𝑄) = 𝐴 → ((𝑧 +Q 𝑄) <Q
𝑢 ↔ 𝐴 <Q 𝑢)) |
39 | 38 | abbidv 2288 |
. . . . . . . . 9
⊢ ((𝑧 +Q
𝑄) = 𝐴 → {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢} = {𝑢 ∣ 𝐴 <Q 𝑢}) |
40 | 37, 39 | opeq12d 3773 |
. . . . . . . 8
⊢ ((𝑧 +Q
𝑄) = 𝐴 → 〈{𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
41 | 35, 40 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) |
42 | | addnqpr 7523 |
. . . . . . . 8
⊢ ((𝑧 ∈ Q ∧
𝑄 ∈ Q)
→ 〈{𝑙 ∣
𝑙
<Q (𝑧 +Q 𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
43 | 31, 30, 42 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q (𝑧 +Q
𝑄)}, {𝑢 ∣ (𝑧 +Q 𝑄) <Q
𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
44 | 41, 43 | eqtr3d 2205 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 = (〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
45 | 29, 44 | breqtrd 4015 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑋 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
(〈{𝑙 ∣ 𝑙 <Q
𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |
46 | | ltaprg 7581 |
. . . . . . 7
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
47 | 46 | adantl 275 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ (𝑓<P 𝑔 ↔ (ℎ +P 𝑓)<P
(ℎ
+P 𝑔))) |
48 | 4 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑋 ∈ P) |
49 | | nqprlu 7509 |
. . . . . . 7
⊢ (𝑧 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉 ∈
P) |
50 | 31, 49 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉 ∈
P) |
51 | 30, 2 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
52 | | addcomprg 7540 |
. . . . . . 7
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
53 | 52 | adantl 275 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
54 | 47, 48, 50, 51, 53 | caovord2d 6022 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉 ↔ (𝑋 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)<P
(〈{𝑙 ∣ 𝑙 <Q
𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
55 | 45, 54 | mpbird 166 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉) |
56 | | nqpru 7514 |
. . . . 5
⊢ ((𝑧 ∈ Q ∧
𝑋 ∈ P)
→ (𝑧 ∈
(2nd ‘𝑋)
↔ 𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉)) |
57 | 31, 48, 56 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → (𝑧 ∈ (2nd ‘𝑋) ↔ 𝑋<P 〈{𝑙 ∣ 𝑙 <Q 𝑧}, {𝑢 ∣ 𝑧 <Q 𝑢}〉)) |
58 | 55, 57 | mpbird 166 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → 𝑧 ∈ (2nd ‘𝑋)) |
59 | | oveq1 5860 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑦 +Q 𝑄) = (𝑧 +Q 𝑄)) |
60 | 59 | eqeq1d 2179 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑦 +Q 𝑄) = 𝐴 ↔ (𝑧 +Q 𝑄) = 𝐴)) |
61 | 60 | rspcev 2834 |
. . 3
⊢ ((𝑧 ∈ (2nd
‘𝑋) ∧ (𝑧 +Q
𝑄) = 𝐴) → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) |
62 | 58, 35, 61 | syl2anc 409 |
. 2
⊢ ((𝜑 ∧ (𝑧 ∈ Q ∧ (𝑄 +Q
𝑧) = 𝐴)) → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) |
63 | 28, 62 | rexlimddv 2592 |
1
⊢ (𝜑 → ∃𝑦 ∈ (2nd ‘𝑋)(𝑦 +Q 𝑄) = 𝐴) |