ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltprordil GIF version

Theorem ltprordil 7051
Description: If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
Assertion
Ref Expression
ltprordil (𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))

Proof of Theorem ltprordil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6967 . . . 4 <P ⊆ (P × P)
21brel 4448 . . 3 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 6968 . . . 4 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵))))
43biimpd 142 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵))))
52, 4mpcom 36 . 2 (𝐴<P 𝐵 → ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))
6 simpll 496 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝐴<P 𝐵)
7 simpr 108 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
8 simprrl 506 . . . . . . 7 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (2nd𝐴))
98adantr 270 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑥 ∈ (2nd𝐴))
102simpld 110 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
11 prop 6937 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1210, 11syl 14 . . . . . . 7 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 prltlu 6949 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑦 <Q 𝑥)
1412, 13syl3an1 1203 . . . . . 6 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑦 <Q 𝑥)
156, 7, 9, 14syl3anc 1170 . . . . 5 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑥)
16 simprrr 507 . . . . . . 7 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (1st𝐵))
1716adantr 270 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑥 ∈ (1st𝐵))
182simprd 112 . . . . . . . 8 (𝐴<P 𝐵𝐵P)
19 prop 6937 . . . . . . . 8 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2018, 19syl 14 . . . . . . 7 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
21 prcdnql 6946 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (1st𝐵)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
2220, 21sylan 277 . . . . . 6 ((𝐴<P 𝐵𝑥 ∈ (1st𝐵)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
236, 17, 22syl2anc 403 . . . . 5 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
2415, 23mpd 13 . . . 4 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐵))
2524ex 113 . . 3 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → (𝑦 ∈ (1st𝐴) → 𝑦 ∈ (1st𝐵)))
2625ssrdv 3016 . 2 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → (1st𝐴) ⊆ (1st𝐵))
275, 26rexlimddv 2487 1 (𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1434  wrex 2354  wss 2984  cop 3425   class class class wbr 3811  cfv 4969  1st c1st 5844  2nd c2nd 5845  Qcnq 6742   <Q cltq 6747  Pcnp 6753  <P cltp 6757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-mi 6768  df-lti 6769  df-enq 6809  df-nqqs 6810  df-ltnqqs 6815  df-inp 6928  df-iltp 6932
This theorem is referenced by:  ltexprlemrl  7072
  Copyright terms: Public domain W3C validator