ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltprordil GIF version

Theorem ltprordil 7684
Description: If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
Assertion
Ref Expression
ltprordil (𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))

Proof of Theorem ltprordil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7600 . . . 4 <P ⊆ (P × P)
21brel 4725 . . 3 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 7601 . . . 4 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵))))
43biimpd 144 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵))))
52, 4mpcom 36 . 2 (𝐴<P 𝐵 → ∃𝑥Q (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))
6 simpll 527 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝐴<P 𝐵)
7 simpr 110 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
8 simprrl 539 . . . . . . 7 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (2nd𝐴))
98adantr 276 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑥 ∈ (2nd𝐴))
102simpld 112 . . . . . . . 8 (𝐴<P 𝐵𝐴P)
11 prop 7570 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1210, 11syl 14 . . . . . . 7 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 prltlu 7582 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑦 <Q 𝑥)
1412, 13syl3an1 1282 . . . . . 6 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴) ∧ 𝑥 ∈ (2nd𝐴)) → 𝑦 <Q 𝑥)
156, 7, 9, 14syl3anc 1249 . . . . 5 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 <Q 𝑥)
16 simprrr 540 . . . . . . 7 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (1st𝐵))
1716adantr 276 . . . . . 6 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑥 ∈ (1st𝐵))
182simprd 114 . . . . . . . 8 (𝐴<P 𝐵𝐵P)
19 prop 7570 . . . . . . . 8 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2018, 19syl 14 . . . . . . 7 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
21 prcdnql 7579 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (1st𝐵)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
2220, 21sylan 283 . . . . . 6 ((𝐴<P 𝐵𝑥 ∈ (1st𝐵)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
236, 17, 22syl2anc 411 . . . . 5 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 <Q 𝑥𝑦 ∈ (1st𝐵)))
2415, 23mpd 13 . . . 4 (((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐵))
2524ex 115 . . 3 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → (𝑦 ∈ (1st𝐴) → 𝑦 ∈ (1st𝐵)))
2625ssrdv 3198 . 2 ((𝐴<P 𝐵 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐴) ∧ 𝑥 ∈ (1st𝐵)))) → (1st𝐴) ⊆ (1st𝐵))
275, 26rexlimddv 2627 1 (𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wrex 2484  wss 3165  cop 3635   class class class wbr 4043  cfv 5268  1st c1st 6214  2nd c2nd 6215  Qcnq 7375   <Q cltq 7380  Pcnp 7386  <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-mi 7401  df-lti 7402  df-enq 7442  df-nqqs 7443  df-ltnqqs 7448  df-inp 7561  df-iltp 7565
This theorem is referenced by:  ltexprlemrl  7705
  Copyright terms: Public domain W3C validator