ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subneg GIF version

Theorem subneg 7729
Description: Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subneg ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))

Proof of Theorem subneg
StepHypRef Expression
1 df-neg 7654 . . . 4 -𝐵 = (0 − 𝐵)
21oveq2i 5663 . . 3 (𝐴 − -𝐵) = (𝐴 − (0 − 𝐵))
3 0cn 7478 . . . 4 0 ∈ ℂ
4 subsub 7710 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (0 − 𝐵)) = ((𝐴 − 0) + 𝐵))
53, 4mp3an2 1261 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (0 − 𝐵)) = ((𝐴 − 0) + 𝐵))
62, 5syl5eq 2132 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = ((𝐴 − 0) + 𝐵))
7 subid1 7700 . . . 4 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
87adantr 270 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 0) = 𝐴)
98oveq1d 5667 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 0) + 𝐵) = (𝐴 + 𝐵))
106, 9eqtrd 2120 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  wcel 1438  (class class class)co 5652  cc 7346  0cc0 7348   + caddc 7351  cmin 7651  -cneg 7652
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-resscn 7435  ax-1cn 7436  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7653  df-neg 7654
This theorem is referenced by:  negneg  7730  negdi  7737  neg2sub  7740  subnegi  7759  subnegd  7798  recextlem1  8118  fzshftral  9518  shftval4  10258  fsumshftm  10835  eftlub  10976  summodnegmod  11101
  Copyright terms: Public domain W3C validator