ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abs2dif GIF version

Theorem abs2dif 11048
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2dif ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))

Proof of Theorem abs2dif
StepHypRef Expression
1 subid1 8118 . . . 4 (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴)
21fveq2d 5490 . . 3 (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) = (abs‘𝐴))
3 subid1 8118 . . . 4 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
43fveq2d 5490 . . 3 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
52, 4oveqan12d 5861 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) = ((abs‘𝐴) − (abs‘𝐵)))
6 0cn 7891 . . . 4 0 ∈ ℂ
7 abs3dif 11047 . . . 4 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0))))
86, 7mp3an2 1315 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0))))
9 subcl 8097 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 − 0) ∈ ℂ)
106, 9mpan2 422 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − 0) ∈ ℂ)
11 abscl 10993 . . . . . . 7 ((𝐴 − 0) ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ)
1210, 11syl 14 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ)
13 subcl 8097 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 − 0) ∈ ℂ)
146, 13mpan2 422 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 − 0) ∈ ℂ)
15 abscl 10993 . . . . . . 7 ((𝐵 − 0) ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ)
1614, 15syl 14 . . . . . 6 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ)
1712, 16anim12i 336 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ))
18 subcl 8097 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
19 abscl 10993 . . . . . 6 ((𝐴𝐵) ∈ ℂ → (abs‘(𝐴𝐵)) ∈ ℝ)
2018, 19syl 14 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
21 df-3an 970 . . . . 5 (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) ↔ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ) ∧ (abs‘(𝐴𝐵)) ∈ ℝ))
2217, 20, 21sylanbrc 414 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ))
23 lesubadd 8332 . . . 4 (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0)))))
2422, 23syl 14 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴𝐵)) + (abs‘(𝐵 − 0)))))
258, 24mpbird 166 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴𝐵)))
265, 25eqbrtrrd 4006 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753   + caddc 7756  cle 7934  cmin 8069  abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  abs2difabs  11050  caubnd2  11059  abs2difd  11139
  Copyright terms: Public domain W3C validator