![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abs2dif | GIF version |
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
Ref | Expression |
---|---|
abs2dif | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid1 7765 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
2 | 1 | fveq2d 5324 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) = (abs‘𝐴)) |
3 | subid1 7765 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
4 | 3 | fveq2d 5324 | . . 3 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
5 | 2, 4 | oveqan12d 5687 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) = ((abs‘𝐴) − (abs‘𝐵))) |
6 | 0cn 7543 | . . . 4 ⊢ 0 ∈ ℂ | |
7 | abs3dif 10601 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) | |
8 | 6, 7 | mp3an2 1262 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) |
9 | subcl 7744 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 − 0) ∈ ℂ) | |
10 | 6, 9 | mpan2 417 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) ∈ ℂ) |
11 | abscl 10547 | . . . . . . 7 ⊢ ((𝐴 − 0) ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) |
13 | subcl 7744 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 − 0) ∈ ℂ) | |
14 | 6, 13 | mpan2 417 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) ∈ ℂ) |
15 | abscl 10547 | . . . . . . 7 ⊢ ((𝐵 − 0) ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) | |
16 | 14, 15 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) |
17 | 12, 16 | anim12i 332 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ)) |
18 | subcl 7744 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
19 | abscl 10547 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(𝐴 − 𝐵)) ∈ ℝ) | |
20 | 18, 19 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
21 | df-3an 927 | . . . . 5 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) ↔ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ) ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) | |
22 | 17, 20, 21 | sylanbrc 409 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) |
23 | lesubadd 7975 | . . . 4 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) | |
24 | 22, 23 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) |
25 | 8, 24 | mpbird 166 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵))) |
26 | 5, 25 | eqbrtrrd 3875 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 925 ∈ wcel 1439 class class class wbr 3853 ‘cfv 5030 (class class class)co 5668 ℂcc 7411 ℝcr 7412 0cc0 7413 + caddc 7416 ≤ cle 7586 − cmin 7716 abscabs 10493 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3962 ax-sep 3965 ax-nul 3973 ax-pow 4017 ax-pr 4047 ax-un 4271 ax-setind 4368 ax-iinf 4418 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-mulrcl 7507 ax-addcom 7508 ax-mulcom 7509 ax-addass 7510 ax-mulass 7511 ax-distr 7512 ax-i2m1 7513 ax-0lt1 7514 ax-1rid 7515 ax-0id 7516 ax-rnegex 7517 ax-precex 7518 ax-cnre 7519 ax-pre-ltirr 7520 ax-pre-ltwlin 7521 ax-pre-lttrn 7522 ax-pre-apti 7523 ax-pre-ltadd 7524 ax-pre-mulgt0 7525 ax-pre-mulext 7526 ax-arch 7527 ax-caucvg 7528 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2624 df-sbc 2844 df-csb 2937 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-nul 3290 df-if 3400 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-iun 3740 df-br 3854 df-opab 3908 df-mpt 3909 df-tr 3945 df-id 4131 df-po 4134 df-iso 4135 df-iord 4204 df-on 4206 df-ilim 4207 df-suc 4209 df-iom 4421 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-rn 4465 df-res 4466 df-ima 4467 df-iota 4995 df-fun 5032 df-fn 5033 df-f 5034 df-f1 5035 df-fo 5036 df-f1o 5037 df-fv 5038 df-riota 5624 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-1st 5927 df-2nd 5928 df-recs 6086 df-frec 6172 df-pnf 7587 df-mnf 7588 df-xr 7589 df-ltxr 7590 df-le 7591 df-sub 7718 df-neg 7719 df-reap 8115 df-ap 8122 df-div 8203 df-inn 8486 df-2 8544 df-3 8545 df-4 8546 df-n0 8737 df-z 8814 df-uz 9083 df-rp 9198 df-iseq 9916 df-seq3 9917 df-exp 10018 df-cj 10339 df-re 10340 df-im 10341 df-rsqrt 10494 df-abs 10495 |
This theorem is referenced by: abs2difabs 10604 caubnd2 10613 abs2difd 10693 |
Copyright terms: Public domain | W3C validator |