Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abs2dif | GIF version |
Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
Ref | Expression |
---|---|
abs2dif | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid1 8118 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
2 | 1 | fveq2d 5490 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) = (abs‘𝐴)) |
3 | subid1 8118 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
4 | 3 | fveq2d 5490 | . . 3 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
5 | 2, 4 | oveqan12d 5861 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) = ((abs‘𝐴) − (abs‘𝐵))) |
6 | 0cn 7891 | . . . 4 ⊢ 0 ∈ ℂ | |
7 | abs3dif 11047 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) | |
8 | 6, 7 | mp3an2 1315 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0)))) |
9 | subcl 8097 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 − 0) ∈ ℂ) | |
10 | 6, 9 | mpan2 422 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) ∈ ℂ) |
11 | abscl 10993 | . . . . . . 7 ⊢ ((𝐴 − 0) ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) | |
12 | 10, 11 | syl 14 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘(𝐴 − 0)) ∈ ℝ) |
13 | subcl 8097 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐵 − 0) ∈ ℂ) | |
14 | 6, 13 | mpan2 422 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) ∈ ℂ) |
15 | abscl 10993 | . . . . . . 7 ⊢ ((𝐵 − 0) ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) | |
16 | 14, 15 | syl 14 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) ∈ ℝ) |
17 | 12, 16 | anim12i 336 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ)) |
18 | subcl 8097 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
19 | abscl 10993 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(𝐴 − 𝐵)) ∈ ℝ) | |
20 | 18, 19 | syl 14 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
21 | df-3an 970 | . . . . 5 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) ↔ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ) ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) | |
22 | 17, 20, 21 | sylanbrc 414 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ)) |
23 | lesubadd 8332 | . . . 4 ⊢ (((abs‘(𝐴 − 0)) ∈ ℝ ∧ (abs‘(𝐵 − 0)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) | |
24 | 22, 23 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 0)) ≤ ((abs‘(𝐴 − 𝐵)) + (abs‘(𝐵 − 0))))) |
25 | 8, 24 | mpbird 166 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 0)) − (abs‘(𝐵 − 0))) ≤ (abs‘(𝐴 − 𝐵))) |
26 | 5, 25 | eqbrtrrd 4006 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 + caddc 7756 ≤ cle 7934 − cmin 8069 abscabs 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 |
This theorem is referenced by: abs2difabs 11050 caubnd2 11059 abs2difd 11139 |
Copyright terms: Public domain | W3C validator |