![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqbi2 | GIF version |
Description: A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
Ref | Expression |
---|---|
flqbi2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zq 9656 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
2 | qaddcl 9665 | . . . 4 ⊢ ((𝑁 ∈ ℚ ∧ 𝐹 ∈ ℚ) → (𝑁 + 𝐹) ∈ ℚ) | |
3 | 1, 2 | sylan 283 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → (𝑁 + 𝐹) ∈ ℚ) |
4 | simpl 109 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → 𝑁 ∈ ℤ) | |
5 | flqbi 10321 | . . 3 ⊢ (((𝑁 + 𝐹) ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) | |
6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
7 | zre 9287 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | qre 9655 | . . 3 ⊢ (𝐹 ∈ ℚ → 𝐹 ∈ ℝ) | |
9 | addge01 8459 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (0 ≤ 𝐹 ↔ 𝑁 ≤ (𝑁 + 𝐹))) | |
10 | 1re 7986 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | ltadd2 8406 | . . . . . 6 ⊢ ((𝐹 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) | |
12 | 10, 11 | mp3an2 1336 | . . . . 5 ⊢ ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) |
13 | 12 | ancoms 268 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) |
14 | 9, 13 | anbi12d 473 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((0 ≤ 𝐹 ∧ 𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
15 | 7, 8, 14 | syl2an 289 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((0 ≤ 𝐹 ∧ 𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
16 | 6, 15 | bitr4d 191 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5896 ℝcr 7840 0cc0 7841 1c1 7842 + caddc 7844 < clt 8022 ≤ cle 8023 ℤcz 9283 ℚcq 9649 ⌊cfl 10299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-n0 9207 df-z 9284 df-q 9650 df-rp 9684 df-fl 10301 |
This theorem is referenced by: adddivflid 10323 divfl0 10327 fldiv4p1lem1div2 10336 flqdiv 10352 modqid 10380 flodddiv4 11971 fldivp1 12380 |
Copyright terms: Public domain | W3C validator |