Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > flqbi2 | GIF version |
Description: A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
Ref | Expression |
---|---|
flqbi2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zq 9585 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
2 | qaddcl 9594 | . . . 4 ⊢ ((𝑁 ∈ ℚ ∧ 𝐹 ∈ ℚ) → (𝑁 + 𝐹) ∈ ℚ) | |
3 | 1, 2 | sylan 281 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → (𝑁 + 𝐹) ∈ ℚ) |
4 | simpl 108 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → 𝑁 ∈ ℤ) | |
5 | flqbi 10246 | . . 3 ⊢ (((𝑁 + 𝐹) ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) | |
6 | 3, 4, 5 | syl2anc 409 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
7 | zre 9216 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | qre 9584 | . . 3 ⊢ (𝐹 ∈ ℚ → 𝐹 ∈ ℝ) | |
9 | addge01 8391 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (0 ≤ 𝐹 ↔ 𝑁 ≤ (𝑁 + 𝐹))) | |
10 | 1re 7919 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | ltadd2 8338 | . . . . . 6 ⊢ ((𝐹 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) | |
12 | 10, 11 | mp3an2 1320 | . . . . 5 ⊢ ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) |
13 | 12 | ancoms 266 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) |
14 | 9, 13 | anbi12d 470 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((0 ≤ 𝐹 ∧ 𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
15 | 7, 8, 14 | syl2an 287 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((0 ≤ 𝐹 ∧ 𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
16 | 6, 15 | bitr4d 190 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 ℤcz 9212 ℚcq 9578 ⌊cfl 10224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-rp 9611 df-fl 10226 |
This theorem is referenced by: adddivflid 10248 divfl0 10252 fldiv4p1lem1div2 10261 flqdiv 10277 modqid 10305 flodddiv4 11893 fldivp1 12300 |
Copyright terms: Public domain | W3C validator |