![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqbi2 | GIF version |
Description: A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.) |
Ref | Expression |
---|---|
flqbi2 | ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zq 9020 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
2 | qaddcl 9029 | . . . 4 ⊢ ((𝑁 ∈ ℚ ∧ 𝐹 ∈ ℚ) → (𝑁 + 𝐹) ∈ ℚ) | |
3 | 1, 2 | sylan 277 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → (𝑁 + 𝐹) ∈ ℚ) |
4 | simpl 107 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → 𝑁 ∈ ℤ) | |
5 | flqbi 9600 | . . 3 ⊢ (((𝑁 + 𝐹) ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) | |
6 | 3, 4, 5 | syl2anc 403 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
7 | zre 8664 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | qre 9019 | . . 3 ⊢ (𝐹 ∈ ℚ → 𝐹 ∈ ℝ) | |
9 | addge01 7871 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (0 ≤ 𝐹 ↔ 𝑁 ≤ (𝑁 + 𝐹))) | |
10 | 1re 7408 | . . . . . 6 ⊢ 1 ∈ ℝ | |
11 | ltadd2 7818 | . . . . . 6 ⊢ ((𝐹 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) | |
12 | 10, 11 | mp3an2 1259 | . . . . 5 ⊢ ((𝐹 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) |
13 | 12 | ancoms 264 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐹 < 1 ↔ (𝑁 + 𝐹) < (𝑁 + 1))) |
14 | 9, 13 | anbi12d 457 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 𝐹 ∈ ℝ) → ((0 ≤ 𝐹 ∧ 𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
15 | 7, 8, 14 | syl2an 283 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((0 ≤ 𝐹 ∧ 𝐹 < 1) ↔ (𝑁 ≤ (𝑁 + 𝐹) ∧ (𝑁 + 𝐹) < (𝑁 + 1)))) |
16 | 6, 15 | bitr4d 189 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹 ∧ 𝐹 < 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1287 ∈ wcel 1436 class class class wbr 3814 ‘cfv 4972 (class class class)co 5594 ℝcr 7270 0cc0 7271 1c1 7272 + caddc 7274 < clt 7443 ≤ cle 7444 ℤcz 8660 ℚcq 9013 ⌊cfl 9578 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-setind 4319 ax-cnex 7357 ax-resscn 7358 ax-1cn 7359 ax-1re 7360 ax-icn 7361 ax-addcl 7362 ax-addrcl 7363 ax-mulcl 7364 ax-mulrcl 7365 ax-addcom 7366 ax-mulcom 7367 ax-addass 7368 ax-mulass 7369 ax-distr 7370 ax-i2m1 7371 ax-0lt1 7372 ax-1rid 7373 ax-0id 7374 ax-rnegex 7375 ax-precex 7376 ax-cnre 7377 ax-pre-ltirr 7378 ax-pre-ltwlin 7379 ax-pre-lttrn 7380 ax-pre-apti 7381 ax-pre-ltadd 7382 ax-pre-mulgt0 7383 ax-pre-mulext 7384 ax-arch 7385 |
This theorem depends on definitions: df-bi 115 df-3or 923 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-nel 2347 df-ral 2360 df-rex 2361 df-reu 2362 df-rmo 2363 df-rab 2364 df-v 2616 df-sbc 2829 df-csb 2922 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-int 3666 df-iun 3709 df-br 3815 df-opab 3869 df-mpt 3870 df-id 4087 df-po 4090 df-iso 4091 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-rn 4415 df-res 4416 df-ima 4417 df-iota 4937 df-fun 4974 df-fn 4975 df-f 4976 df-fv 4980 df-riota 5550 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-1st 5849 df-2nd 5850 df-pnf 7445 df-mnf 7446 df-xr 7447 df-ltxr 7448 df-le 7449 df-sub 7576 df-neg 7577 df-reap 7970 df-ap 7977 df-div 8056 df-inn 8335 df-n0 8584 df-z 8661 df-q 9014 df-rp 9044 df-fl 9580 |
This theorem is referenced by: adddivflid 9602 divfl0 9606 fldiv4p1lem1div2 9615 flqdiv 9631 modqid 9659 flodddiv4 10728 |
Copyright terms: Public domain | W3C validator |