Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecfzen2 | GIF version |
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.) |
Ref | Expression |
---|---|
frecfzennn.1 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
frecfzen2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9463 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | eluzelz 9467 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | 1z 9209 | . . . . 5 ⊢ 1 ∈ ℤ | |
4 | zsubcl 9224 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ) | |
5 | 3, 1, 4 | sylancr 411 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (1 − 𝑀) ∈ ℤ) |
6 | fzen 9969 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀)))) | |
7 | 1, 2, 5, 6 | syl3anc 1227 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀)))) |
8 | 1 | zcnd 9306 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℂ) |
9 | ax-1cn 7838 | . . . . 5 ⊢ 1 ∈ ℂ | |
10 | pncan3 8098 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1) | |
11 | 8, 9, 10 | sylancl 410 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 + (1 − 𝑀)) = 1) |
12 | zcn 9188 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
13 | zcn 9188 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | addsubass 8100 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) | |
15 | 9, 14 | mp3an2 1314 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
16 | 12, 13, 15 | syl2an 287 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
17 | 2, 1, 16 | syl2anc 409 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
18 | 17 | eqcomd 2170 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀)) |
19 | 11, 18 | oveq12d 5855 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀))) |
20 | 7, 19 | breqtrd 4003 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀))) |
21 | peano2uz 9513 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
22 | uznn0sub 9489 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) | |
23 | frecfzennn.1 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
24 | 23 | frecfzennn 10352 | . . 3 ⊢ (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
25 | 21, 22, 24 | 3syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
26 | entr 6742 | . 2 ⊢ (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | |
27 | 20, 25, 26 | syl2anc 409 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 class class class wbr 3977 ↦ cmpt 4038 ◡ccnv 4598 ‘cfv 5183 (class class class)co 5837 freccfrec 6350 ≈ cen 6696 ℂcc 7743 0cc0 7745 1c1 7746 + caddc 7748 − cmin 8061 ℕ0cn0 9106 ℤcz 9183 ℤ≥cuz 9458 ...cfz 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-recs 6265 df-frec 6351 df-1o 6376 df-er 6493 df-en 6699 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-inn 8850 df-n0 9107 df-z 9184 df-uz 9459 df-fz 9937 |
This theorem is referenced by: fzfig 10356 |
Copyright terms: Public domain | W3C validator |