ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzen2 GIF version

Theorem frecfzen2 10536
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
frecfzen2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))

Proof of Theorem frecfzen2
StepHypRef Expression
1 eluzel2 9623 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 9627 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 1z 9369 . . . . 5 1 ∈ ℤ
4 zsubcl 9384 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 1, 4sylancr 414 . . . 4 (𝑁 ∈ (ℤ𝑀) → (1 − 𝑀) ∈ ℤ)
6 fzen 10135 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
71, 2, 5, 6syl3anc 1249 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
81zcnd 9466 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℂ)
9 ax-1cn 7989 . . . . 5 1 ∈ ℂ
10 pncan3 8251 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
118, 9, 10sylancl 413 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀 + (1 − 𝑀)) = 1)
12 zcn 9348 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 zcn 9348 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 addsubass 8253 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
159, 14mp3an2 1336 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1612, 13, 15syl2an 289 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
172, 1, 16syl2anc 411 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1817eqcomd 2202 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀))
1911, 18oveq12d 5943 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀)))
207, 19breqtrd 4060 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)))
21 peano2uz 9674 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
22 uznn0sub 9650 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
23 frecfzennn.1 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2423frecfzennn 10535 . . 3 (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2521, 22, 243syl 17 . 2 (𝑁 ∈ (ℤ𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
26 entr 6852 . 2 (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2720, 25, 26syl2anc 411 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167   class class class wbr 4034  cmpt 4095  ccnv 4663  cfv 5259  (class class class)co 5925  freccfrec 6457  cen 6806  cc 7894  0cc0 7896  1c1 7897   + caddc 7899  cmin 8214  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  fzfig  10539
  Copyright terms: Public domain W3C validator