![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frecfzen2 | GIF version |
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.) |
Ref | Expression |
---|---|
frecfzennn.1 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
frecfzen2 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9597 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | eluzelz 9601 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | 1z 9343 | . . . . 5 ⊢ 1 ∈ ℤ | |
4 | zsubcl 9358 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ) | |
5 | 3, 1, 4 | sylancr 414 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (1 − 𝑀) ∈ ℤ) |
6 | fzen 10109 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀)))) | |
7 | 1, 2, 5, 6 | syl3anc 1249 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀)))) |
8 | 1 | zcnd 9440 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℂ) |
9 | ax-1cn 7965 | . . . . 5 ⊢ 1 ∈ ℂ | |
10 | pncan3 8227 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1) | |
11 | 8, 9, 10 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 + (1 − 𝑀)) = 1) |
12 | zcn 9322 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
13 | zcn 9322 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | addsubass 8229 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) | |
15 | 9, 14 | mp3an2 1336 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
16 | 12, 13, 15 | syl2an 289 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
17 | 2, 1, 16 | syl2anc 411 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀))) |
18 | 17 | eqcomd 2199 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀)) |
19 | 11, 18 | oveq12d 5936 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀))) |
20 | 7, 19 | breqtrd 4055 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀))) |
21 | peano2uz 9648 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
22 | uznn0sub 9624 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0) | |
23 | frecfzennn.1 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
24 | 23 | frecfzennn 10497 | . . 3 ⊢ (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
25 | 21, 22, 24 | 3syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
26 | entr 6838 | . 2 ⊢ (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) | |
27 | 20, 25, 26 | syl2anc 411 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) ≈ (◡𝐺‘((𝑁 + 1) − 𝑀))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ↦ cmpt 4090 ◡ccnv 4658 ‘cfv 5254 (class class class)co 5918 freccfrec 6443 ≈ cen 6792 ℂcc 7870 0cc0 7872 1c1 7873 + caddc 7875 − cmin 8190 ℕ0cn0 9240 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-1o 6469 df-er 6587 df-en 6795 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 |
This theorem is referenced by: fzfig 10501 |
Copyright terms: Public domain | W3C validator |