ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzen2 GIF version

Theorem frecfzen2 10353
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
frecfzen2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))

Proof of Theorem frecfzen2
StepHypRef Expression
1 eluzel2 9463 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 eluzelz 9467 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3 1z 9209 . . . . 5 1 ∈ ℤ
4 zsubcl 9224 . . . . 5 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 − 𝑀) ∈ ℤ)
53, 1, 4sylancr 411 . . . 4 (𝑁 ∈ (ℤ𝑀) → (1 − 𝑀) ∈ ℤ)
6 fzen 9969 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (1 − 𝑀) ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
71, 2, 5, 6syl3anc 1227 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))))
81zcnd 9306 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℂ)
9 ax-1cn 7838 . . . . 5 1 ∈ ℂ
10 pncan3 8098 . . . . 5 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 + (1 − 𝑀)) = 1)
118, 9, 10sylancl 410 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑀 + (1 − 𝑀)) = 1)
12 zcn 9188 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 zcn 9188 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 addsubass 8100 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
159, 14mp3an2 1314 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1612, 13, 15syl2an 287 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
172, 1, 16syl2anc 409 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) = (𝑁 + (1 − 𝑀)))
1817eqcomd 2170 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + (1 − 𝑀)) = ((𝑁 + 1) − 𝑀))
1911, 18oveq12d 5855 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + (1 − 𝑀))...(𝑁 + (1 − 𝑀))) = (1...((𝑁 + 1) − 𝑀)))
207, 19breqtrd 4003 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)))
21 peano2uz 9513 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
22 uznn0sub 9489 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → ((𝑁 + 1) − 𝑀) ∈ ℕ0)
23 frecfzennn.1 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
2423frecfzennn 10352 . . 3 (((𝑁 + 1) − 𝑀) ∈ ℕ0 → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2521, 22, 243syl 17 . 2 (𝑁 ∈ (ℤ𝑀) → (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
26 entr 6742 . 2 (((𝑀...𝑁) ≈ (1...((𝑁 + 1) − 𝑀)) ∧ (1...((𝑁 + 1) − 𝑀)) ≈ (𝐺‘((𝑁 + 1) − 𝑀))) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
2720, 25, 26syl2anc 409 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1342  wcel 2135   class class class wbr 3977  cmpt 4038  ccnv 4598  cfv 5183  (class class class)co 5837  freccfrec 6350  cen 6696  cc 7743  0cc0 7745  1c1 7746   + caddc 7748  cmin 8061  0cn0 9106  cz 9183  cuz 9458  ...cfz 9936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-addcom 7845  ax-addass 7847  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-0id 7853  ax-rnegex 7854  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-frec 6351  df-1o 6376  df-er 6493  df-en 6699  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-inn 8850  df-n0 9107  df-z 9184  df-uz 9459  df-fz 9937
This theorem is referenced by:  fzfig  10356
  Copyright terms: Public domain W3C validator