| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnap0 | GIF version | ||
| Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| nnap0 | ⊢ (𝐴 ∈ ℕ → 𝐴 # 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9125 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nngt0 9143 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 3 | 1, 2 | gt0ap0d 8784 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 # 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4083 0cc0 8007 # cap 8736 ℕcn 9118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-inn 9119 |
| This theorem is referenced by: nndivre 9154 nndiv 9159 nndivtr 9160 nnap0d 9164 zdiv 9543 zdivadd 9544 zdivmul 9545 divfnzn 9824 qmulz 9826 qre 9828 qaddcl 9838 qnegcl 9839 qmulcl 9840 qapne 9842 nn0ledivnn 9971 flqdiv 10551 facdiv 10968 caucvgrelemcau 11499 expcnvap0 12021 ef0lem 12179 qredeq 12626 qredeu 12627 divgcdcoprm0 12631 isprm6 12677 sqrt2irr 12692 hashgcdlem 12768 pythagtriplem10 12800 pcqcl 12837 pcneg 12856 fldivp1 12879 infpnlem2 12891 znidomb 14630 rpcxproot 15596 |
| Copyright terms: Public domain | W3C validator |