ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnap0 GIF version

Theorem nnap0 9127
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.)
Assertion
Ref Expression
nnap0 (𝐴 ∈ ℕ → 𝐴 # 0)

Proof of Theorem nnap0
StepHypRef Expression
1 nnre 9105 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nngt0 9123 . 2 (𝐴 ∈ ℕ → 0 < 𝐴)
31, 2gt0ap0d 8764 1 (𝐴 ∈ ℕ → 𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200   class class class wbr 4082  0cc0 7987   # cap 8716  cn 9098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-inn 9099
This theorem is referenced by:  nndivre  9134  nndiv  9139  nndivtr  9140  nnap0d  9144  zdiv  9523  zdivadd  9524  zdivmul  9525  divfnzn  9804  qmulz  9806  qre  9808  qaddcl  9818  qnegcl  9819  qmulcl  9820  qapne  9822  nn0ledivnn  9951  flqdiv  10530  facdiv  10947  caucvgrelemcau  11477  expcnvap0  11999  ef0lem  12157  qredeq  12604  qredeu  12605  divgcdcoprm0  12609  isprm6  12655  sqrt2irr  12670  hashgcdlem  12746  pythagtriplem10  12778  pcqcl  12815  pcneg  12834  fldivp1  12857  infpnlem2  12869  znidomb  14607  rpcxproot  15573
  Copyright terms: Public domain W3C validator