ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnap0 GIF version

Theorem nnap0 8950
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.)
Assertion
Ref Expression
nnap0 (𝐴 ∈ ℕ → 𝐴 # 0)

Proof of Theorem nnap0
StepHypRef Expression
1 nnre 8928 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nngt0 8946 . 2 (𝐴 ∈ ℕ → 0 < 𝐴)
31, 2gt0ap0d 8588 1 (𝐴 ∈ ℕ → 𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148   class class class wbr 4005  0cc0 7813   # cap 8540  cn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-inn 8922
This theorem is referenced by:  nndivre  8957  nndiv  8962  nndivtr  8963  nnap0d  8967  zdiv  9343  zdivadd  9344  zdivmul  9345  divfnzn  9623  qmulz  9625  qre  9627  qaddcl  9637  qnegcl  9638  qmulcl  9639  qapne  9641  nn0ledivnn  9769  flqdiv  10323  facdiv  10720  caucvgrelemcau  10991  expcnvap0  11512  ef0lem  11670  qredeq  12098  qredeu  12099  divgcdcoprm0  12103  isprm6  12149  sqrt2irr  12164  hashgcdlem  12240  pythagtriplem10  12271  pcqcl  12308  pcneg  12326  fldivp1  12348  infpnlem2  12360  rpcxproot  14373
  Copyright terms: Public domain W3C validator