ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnap0 GIF version

Theorem nnap0 9080
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.)
Assertion
Ref Expression
nnap0 (𝐴 ∈ ℕ → 𝐴 # 0)

Proof of Theorem nnap0
StepHypRef Expression
1 nnre 9058 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 nngt0 9076 . 2 (𝐴 ∈ ℕ → 0 < 𝐴)
31, 2gt0ap0d 8717 1 (𝐴 ∈ ℕ → 𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177   class class class wbr 4050  0cc0 7940   # cap 8669  cn 9051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-inn 9052
This theorem is referenced by:  nndivre  9087  nndiv  9092  nndivtr  9093  nnap0d  9097  zdiv  9476  zdivadd  9477  zdivmul  9478  divfnzn  9757  qmulz  9759  qre  9761  qaddcl  9771  qnegcl  9772  qmulcl  9773  qapne  9775  nn0ledivnn  9904  flqdiv  10483  facdiv  10900  caucvgrelemcau  11361  expcnvap0  11883  ef0lem  12041  qredeq  12488  qredeu  12489  divgcdcoprm0  12493  isprm6  12539  sqrt2irr  12554  hashgcdlem  12630  pythagtriplem10  12662  pcqcl  12699  pcneg  12718  fldivp1  12741  infpnlem2  12753  znidomb  14490  rpcxproot  15456
  Copyright terms: Public domain W3C validator