| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plysub | GIF version | ||
| Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyadd.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| plyadd.2 | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| plyadd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| plymul.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| plysub.5 | ⊢ (𝜑 → -1 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| plysub | ⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8131 | . . 3 ⊢ ℂ ∈ V | |
| 2 | plyadd.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 3 | plyf 15419 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 5 | plyadd.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | |
| 6 | plyf 15419 | . . . 4 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
| 8 | ofnegsub 9117 | . . 3 ⊢ ((ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ ∧ 𝐺:ℂ⟶ℂ) → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) | |
| 9 | 1, 4, 7, 8 | mp3an2i 1376 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) = (𝐹 ∘𝑓 − 𝐺)) |
| 10 | plybss 15415 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 11 | 2, 10 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 12 | plysub.5 | . . . . 5 ⊢ (𝜑 → -1 ∈ 𝑆) | |
| 13 | plyconst 15427 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ -1 ∈ 𝑆) → (ℂ × {-1}) ∈ (Poly‘𝑆)) | |
| 14 | 11, 12, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (ℂ × {-1}) ∈ (Poly‘𝑆)) |
| 15 | plyadd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 16 | plymul.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | |
| 17 | 14, 5, 15, 16 | plymul 15434 | . . 3 ⊢ (𝜑 → ((ℂ × {-1}) ∘𝑓 · 𝐺) ∈ (Poly‘𝑆)) |
| 18 | 2, 17, 15 | plyadd 15433 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 + ((ℂ × {-1}) ∘𝑓 · 𝐺)) ∈ (Poly‘𝑆)) |
| 19 | 9, 18 | eqeltrrd 2307 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 − 𝐺) ∈ (Poly‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 {csn 3666 × cxp 4717 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 ∘𝑓 cof 6222 ℂcc 8005 1c1 8008 + caddc 8010 · cmul 8012 − cmin 8325 -cneg 8326 Polycply 15410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-map 6805 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ply 15412 |
| This theorem is referenced by: plysubcl 15438 |
| Copyright terms: Public domain | W3C validator |