| Step | Hyp | Ref
| Expression |
| 1 | | plycjlem.2 |
. . 3
⊢ 𝐺 = ((∗ ∘ 𝐹) ∘
∗) |
| 2 | | cjcl 11013 |
. . . . 5
⊢ (𝑧 ∈ ℂ →
(∗‘𝑧) ∈
ℂ) |
| 3 | 2 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (∗‘𝑧) ∈
ℂ) |
| 4 | | cjf 11012 |
. . . . . 6
⊢
∗:ℂ⟶ℂ |
| 5 | 4 | a1i 9 |
. . . . 5
⊢ (𝜑 →
∗:ℂ⟶ℂ) |
| 6 | 5 | feqmptd 5614 |
. . . 4
⊢ (𝜑 → ∗ = (𝑧 ∈ ℂ ↦
(∗‘𝑧))) |
| 7 | | 0zd 9338 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
| 8 | | plycjlemc.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 9 | 8 | nn0zd 9446 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 7, 9 | fzfigd 10523 |
. . . . . . 7
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 11 | 10 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin) |
| 12 | | plycjlemc.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 13 | | plycjlemc.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 14 | | plybss 14969 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| 15 | 13, 14 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 16 | | 0cn 8018 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℂ |
| 17 | | snssi 3766 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
| 18 | 16, 17 | mp1i 10 |
. . . . . . . . . . . 12
⊢ (𝜑 → {0} ⊆
ℂ) |
| 19 | 15, 18 | unssd 3339 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 20 | 12, 19 | fssd 5420 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 21 | 20 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ) |
| 22 | | elfznn0 10189 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 23 | 22 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 24 | 21, 23 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 25 | 24 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 26 | | simplr 528 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℂ) |
| 27 | 22 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 28 | 26, 27 | expcld 10765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥↑𝑘) ∈ ℂ) |
| 29 | 25, 28 | mulcld 8047 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 30 | 11, 29 | fsumcl 11565 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
| 31 | | plycjlemc.f |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 32 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧↑𝑘) = (𝑥↑𝑘)) |
| 33 | 32 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 34 | 33 | sumeq2sdv 11535 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 35 | 34 | cbvmptv 4129 |
. . . . . 6
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
| 36 | 31, 35 | eqtrdi 2245 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) |
| 37 | | fveq2 5558 |
. . . . 5
⊢ (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) |
| 38 | 30, 36, 6, 37 | fmptco 5728 |
. . . 4
⊢ (𝜑 → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))))) |
| 39 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = (∗‘𝑧) → (𝑥↑𝑘) = ((∗‘𝑧)↑𝑘)) |
| 40 | 39 | oveq2d 5938 |
. . . . . 6
⊢ (𝑥 = (∗‘𝑧) → ((𝐴‘𝑘) · (𝑥↑𝑘)) = ((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) |
| 41 | 40 | sumeq2sdv 11535 |
. . . . 5
⊢ (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) |
| 42 | 41 | fveq2d 5562 |
. . . 4
⊢ (𝑥 = (∗‘𝑧) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) |
| 43 | 3, 6, 38, 42 | fmptco 5728 |
. . 3
⊢ (𝜑 → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))))) |
| 44 | 1, 43 | eqtrid 2241 |
. 2
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))))) |
| 45 | 10 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
| 46 | 24 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 47 | 2 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘𝑧) ∈ ℂ) |
| 48 | 22 | adantl 277 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 49 | 47, 48 | expcld 10765 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ) |
| 50 | 46, 49 | mulcld 8047 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ) |
| 51 | 45, 50 | fsumcj 11639 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) |
| 52 | 46, 49 | cjmuld 11131 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴‘𝑘)) ·
(∗‘((∗‘𝑧)↑𝑘)))) |
| 53 | 21 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ) |
| 54 | | fvco3 5632 |
. . . . . . . 8
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
| 55 | 53, 48, 54 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
| 56 | 47, 48 | cjexpd 11123 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
(∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘)) |
| 57 | | cjcj 11048 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℂ →
(∗‘(∗‘𝑧)) = 𝑧) |
| 58 | 57 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
(∗‘(∗‘𝑧)) = 𝑧) |
| 59 | 58 | oveq1d 5937 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
((∗‘(∗‘𝑧))↑𝑘) = (𝑧↑𝑘)) |
| 60 | 56, 59 | eqtr2d 2230 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧↑𝑘) = (∗‘((∗‘𝑧)↑𝑘))) |
| 61 | 55, 60 | oveq12d 5940 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)) = ((∗‘(𝐴‘𝑘)) ·
(∗‘((∗‘𝑧)↑𝑘)))) |
| 62 | 52, 61 | eqtr4d 2232 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
| 63 | 62 | sumeq2dv 11533 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
| 64 | 51, 63 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
| 65 | 64 | mpteq2dva 4123 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
| 66 | 44, 65 | eqtrd 2229 |
1
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |