Step | Hyp | Ref
| Expression |
1 | | plycjlem.2 |
. . 3
⊢ 𝐺 = ((∗ ∘ 𝐹) ∘
∗) |
2 | | cjcl 10995 |
. . . . 5
⊢ (𝑧 ∈ ℂ →
(∗‘𝑧) ∈
ℂ) |
3 | 2 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (∗‘𝑧) ∈
ℂ) |
4 | | cjf 10994 |
. . . . . 6
⊢
∗:ℂ⟶ℂ |
5 | 4 | a1i 9 |
. . . . 5
⊢ (𝜑 →
∗:ℂ⟶ℂ) |
6 | 5 | feqmptd 5611 |
. . . 4
⊢ (𝜑 → ∗ = (𝑧 ∈ ℂ ↦
(∗‘𝑧))) |
7 | | 0zd 9332 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
8 | | plycjlemc.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
9 | 8 | nn0zd 9440 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 7, 9 | fzfigd 10505 |
. . . . . . 7
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
11 | 10 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin) |
12 | | plycjlemc.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
13 | | plycjlemc.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
14 | | plybss 14904 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
15 | 13, 14 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
16 | | 0cn 8013 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℂ |
17 | | snssi 3763 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
18 | 16, 17 | mp1i 10 |
. . . . . . . . . . . 12
⊢ (𝜑 → {0} ⊆
ℂ) |
19 | 15, 18 | unssd 3336 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
20 | 12, 19 | fssd 5417 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
21 | 20 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ) |
22 | | elfznn0 10183 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
23 | 22 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
24 | 21, 23 | ffvelcdmd 5695 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
25 | 24 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
26 | | simplr 528 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℂ) |
27 | 22 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
28 | 26, 27 | expcld 10747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥↑𝑘) ∈ ℂ) |
29 | 25, 28 | mulcld 8042 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
30 | 11, 29 | fsumcl 11546 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) ∈ ℂ) |
31 | | plycjlemc.f |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
32 | | oveq1 5926 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧↑𝑘) = (𝑥↑𝑘)) |
33 | 32 | oveq2d 5935 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑥↑𝑘))) |
34 | 33 | sumeq2sdv 11516 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
35 | 34 | cbvmptv 4126 |
. . . . . 6
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) |
36 | 31, 35 | eqtrdi 2242 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) |
37 | | fveq2 5555 |
. . . . 5
⊢ (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)))) |
38 | 30, 36, 6, 37 | fmptco 5725 |
. . . 4
⊢ (𝜑 → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))))) |
39 | | oveq1 5926 |
. . . . . . 7
⊢ (𝑥 = (∗‘𝑧) → (𝑥↑𝑘) = ((∗‘𝑧)↑𝑘)) |
40 | 39 | oveq2d 5935 |
. . . . . 6
⊢ (𝑥 = (∗‘𝑧) → ((𝐴‘𝑘) · (𝑥↑𝑘)) = ((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) |
41 | 40 | sumeq2sdv 11516 |
. . . . 5
⊢ (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) |
42 | 41 | fveq2d 5559 |
. . . 4
⊢ (𝑥 = (∗‘𝑧) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · (𝑥↑𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) |
43 | 3, 6, 38, 42 | fmptco 5725 |
. . 3
⊢ (𝜑 → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))))) |
44 | 1, 43 | eqtrid 2238 |
. 2
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))))) |
45 | 10 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
46 | 24 | adantlr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
47 | 2 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘𝑧) ∈ ℂ) |
48 | 22 | adantl 277 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
49 | 47, 48 | expcld 10747 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ) |
50 | 46, 49 | mulcld 8042 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ) |
51 | 45, 50 | fsumcj 11620 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) |
52 | 46, 49 | cjmuld 11113 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴‘𝑘)) ·
(∗‘((∗‘𝑧)↑𝑘)))) |
53 | 21 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ) |
54 | | fvco3 5629 |
. . . . . . . 8
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
55 | 53, 48, 54 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
56 | 47, 48 | cjexpd 11105 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
(∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘)) |
57 | | cjcj 11030 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℂ →
(∗‘(∗‘𝑧)) = 𝑧) |
58 | 57 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
(∗‘(∗‘𝑧)) = 𝑧) |
59 | 58 | oveq1d 5934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) →
((∗‘(∗‘𝑧))↑𝑘) = (𝑧↑𝑘)) |
60 | 56, 59 | eqtr2d 2227 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧↑𝑘) = (∗‘((∗‘𝑧)↑𝑘))) |
61 | 55, 60 | oveq12d 5937 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)) = ((∗‘(𝐴‘𝑘)) ·
(∗‘((∗‘𝑧)↑𝑘)))) |
62 | 52, 61 | eqtr4d 2229 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
63 | 62 | sumeq2dv 11514 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
64 | 51, 63 | eqtrd 2226 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) →
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘))) |
65 | 64 | mpteq2dva 4120 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦
(∗‘Σ𝑘
∈ (0...𝑁)((𝐴‘𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
66 | 44, 65 | eqtrd 2226 |
1
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |