ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc GIF version

Theorem plycjlemc 15080
Description: Lemma for plycj 15081. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n (𝜑𝑁 ∈ ℕ0)
plycjlem.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjlemc.a (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
plycjlemc.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
plycjlemc.p (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycjlemc (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑘)

Proof of Theorem plycjlemc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
2 cjcl 11030 . . . . 5 (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ)
32adantl 277 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∗‘𝑧) ∈ ℂ)
4 cjf 11029 . . . . . 6 ∗:ℂ⟶ℂ
54a1i 9 . . . . 5 (𝜑 → ∗:ℂ⟶ℂ)
65feqmptd 5617 . . . 4 (𝜑 → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
7 0zd 9355 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
8 plycjlemc.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
98nn0zd 9463 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
107, 9fzfigd 10540 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
1110adantr 276 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
12 plycjlemc.a . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
13 plycjlemc.p . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (Poly‘𝑆))
14 plybss 15053 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
1513, 14syl 14 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
16 0cn 8035 . . . . . . . . . . . . 13 0 ∈ ℂ
17 snssi 3767 . . . . . . . . . . . . 13 (0 ∈ ℂ → {0} ⊆ ℂ)
1816, 17mp1i 10 . . . . . . . . . . . 12 (𝜑 → {0} ⊆ ℂ)
1915, 18unssd 3340 . . . . . . . . . . 11 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5423 . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ)
22 elfznn0 10206 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
2322adantl 277 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2421, 23ffvelcdmd 5701 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
2524adantlr 477 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
26 simplr 528 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℂ)
2722adantl 277 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2826, 27expcld 10782 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
2925, 28mulcld 8064 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
3011, 29fsumcl 11582 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
31 plycjlemc.f . . . . . 6 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
32 oveq1 5932 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
3332oveq2d 5941 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐴𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑥𝑘)))
3433sumeq2sdv 11552 . . . . . . 7 (𝑧 = 𝑥 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3534cbvmptv 4130 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3631, 35eqtrdi 2245 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
37 fveq2 5561 . . . . 5 (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
3830, 36, 6, 37fmptco 5731 . . . 4 (𝜑 → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))))
39 oveq1 5932 . . . . . . 7 (𝑥 = (∗‘𝑧) → (𝑥𝑘) = ((∗‘𝑧)↑𝑘))
4039oveq2d 5941 . . . . . 6 (𝑥 = (∗‘𝑧) → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
4140sumeq2sdv 11552 . . . . 5 (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
4241fveq2d 5565 . . . 4 (𝑥 = (∗‘𝑧) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
433, 6, 38, 42fmptco 5731 . . 3 (𝜑 → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
441, 43eqtrid 2241 . 2 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
4510adantr 276 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
4624adantlr 477 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
472ad2antlr 489 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘𝑧) ∈ ℂ)
4822adantl 277 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
4947, 48expcld 10782 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
5046, 49mulcld 8064 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ)
5145, 50fsumcj 11656 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
5246, 49cjmuld 11148 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
5321adantlr 477 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ)
54 fvco3 5635 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
5553, 48, 54syl2anc 411 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
5647, 48cjexpd 11140 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
57 cjcj 11065 . . . . . . . . . 10 (𝑧 ∈ ℂ → (∗‘(∗‘𝑧)) = 𝑧)
5857ad2antlr 489 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘(∗‘𝑧)) = 𝑧)
5958oveq1d 5940 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘(∗‘𝑧))↑𝑘) = (𝑧𝑘))
6056, 59eqtr2d 2230 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧𝑘) = (∗‘((∗‘𝑧)↑𝑘)))
6155, 60oveq12d 5943 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
6252, 61eqtr4d 2232 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6362sumeq2dv 11550 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6451, 63eqtrd 2229 . . 3 ((𝜑𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6564mpteq2dva 4124 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
6644, 65eqtrd 2229 1 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cun 3155  wss 3157  {csn 3623  cmpt 4095  ccom 4668  wf 5255  cfv 5259  (class class class)co 5925  Fincfn 6808  cc 7894  0cc0 7896   · cmul 7901  0cn0 9266  ...cfz 10100  cexp 10647  ccj 11021  Σcsu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ply 15050
This theorem is referenced by:  plycj  15081
  Copyright terms: Public domain W3C validator