ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc GIF version

Theorem plycjlemc 14930
Description: Lemma for plycj 14931. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n (𝜑𝑁 ∈ ℕ0)
plycjlem.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjlemc.a (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
plycjlemc.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
plycjlemc.p (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycjlemc (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑘)

Proof of Theorem plycjlemc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
2 cjcl 10995 . . . . 5 (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ)
32adantl 277 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∗‘𝑧) ∈ ℂ)
4 cjf 10994 . . . . . 6 ∗:ℂ⟶ℂ
54a1i 9 . . . . 5 (𝜑 → ∗:ℂ⟶ℂ)
65feqmptd 5611 . . . 4 (𝜑 → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
7 0zd 9332 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
8 plycjlemc.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
98nn0zd 9440 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
107, 9fzfigd 10505 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
1110adantr 276 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
12 plycjlemc.a . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
13 plycjlemc.p . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (Poly‘𝑆))
14 plybss 14904 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
1513, 14syl 14 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
16 0cn 8013 . . . . . . . . . . . . 13 0 ∈ ℂ
17 snssi 3763 . . . . . . . . . . . . 13 (0 ∈ ℂ → {0} ⊆ ℂ)
1816, 17mp1i 10 . . . . . . . . . . . 12 (𝜑 → {0} ⊆ ℂ)
1915, 18unssd 3336 . . . . . . . . . . 11 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5417 . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ)
22 elfznn0 10183 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
2322adantl 277 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2421, 23ffvelcdmd 5695 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
2524adantlr 477 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
26 simplr 528 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℂ)
2722adantl 277 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2826, 27expcld 10747 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
2925, 28mulcld 8042 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
3011, 29fsumcl 11546 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
31 plycjlemc.f . . . . . 6 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
32 oveq1 5926 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
3332oveq2d 5935 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐴𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑥𝑘)))
3433sumeq2sdv 11516 . . . . . . 7 (𝑧 = 𝑥 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3534cbvmptv 4126 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3631, 35eqtrdi 2242 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
37 fveq2 5555 . . . . 5 (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
3830, 36, 6, 37fmptco 5725 . . . 4 (𝜑 → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))))
39 oveq1 5926 . . . . . . 7 (𝑥 = (∗‘𝑧) → (𝑥𝑘) = ((∗‘𝑧)↑𝑘))
4039oveq2d 5935 . . . . . 6 (𝑥 = (∗‘𝑧) → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
4140sumeq2sdv 11516 . . . . 5 (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
4241fveq2d 5559 . . . 4 (𝑥 = (∗‘𝑧) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
433, 6, 38, 42fmptco 5725 . . 3 (𝜑 → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
441, 43eqtrid 2238 . 2 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
4510adantr 276 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
4624adantlr 477 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
472ad2antlr 489 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘𝑧) ∈ ℂ)
4822adantl 277 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
4947, 48expcld 10747 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
5046, 49mulcld 8042 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ)
5145, 50fsumcj 11620 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
5246, 49cjmuld 11113 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
5321adantlr 477 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ)
54 fvco3 5629 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
5553, 48, 54syl2anc 411 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
5647, 48cjexpd 11105 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
57 cjcj 11030 . . . . . . . . . 10 (𝑧 ∈ ℂ → (∗‘(∗‘𝑧)) = 𝑧)
5857ad2antlr 489 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘(∗‘𝑧)) = 𝑧)
5958oveq1d 5934 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘(∗‘𝑧))↑𝑘) = (𝑧𝑘))
6056, 59eqtr2d 2227 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧𝑘) = (∗‘((∗‘𝑧)↑𝑘)))
6155, 60oveq12d 5937 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
6252, 61eqtr4d 2229 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6362sumeq2dv 11514 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6451, 63eqtrd 2226 . . 3 ((𝜑𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6564mpteq2dva 4120 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
6644, 65eqtrd 2226 1 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cun 3152  wss 3154  {csn 3619  cmpt 4091  ccom 4664  wf 5251  cfv 5255  (class class class)co 5919  Fincfn 6796  cc 7872  0cc0 7874   · cmul 7879  0cn0 9243  ...cfz 10077  cexp 10612  ccj 10986  Σcsu 11499  Polycply 14899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ply 14901
This theorem is referenced by:  plycj  14931
  Copyright terms: Public domain W3C validator