ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycjlemc GIF version

Theorem plycjlemc 15399
Description: Lemma for plycj 15400. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
Hypotheses
Ref Expression
plycjlemc.n (𝜑𝑁 ∈ ℕ0)
plycjlem.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjlemc.a (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
plycjlemc.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
plycjlemc.p (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycjlemc (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝐺(𝑧,𝑘)

Proof of Theorem plycjlemc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 plycjlem.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
2 cjcl 11325 . . . . 5 (𝑧 ∈ ℂ → (∗‘𝑧) ∈ ℂ)
32adantl 277 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∗‘𝑧) ∈ ℂ)
4 cjf 11324 . . . . . 6 ∗:ℂ⟶ℂ
54a1i 9 . . . . 5 (𝜑 → ∗:ℂ⟶ℂ)
65feqmptd 5660 . . . 4 (𝜑 → ∗ = (𝑧 ∈ ℂ ↦ (∗‘𝑧)))
7 0zd 9426 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
8 plycjlemc.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
98nn0zd 9535 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
107, 9fzfigd 10620 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
1110adantr 276 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → (0...𝑁) ∈ Fin)
12 plycjlemc.a . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
13 plycjlemc.p . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (Poly‘𝑆))
14 plybss 15372 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
1513, 14syl 14 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
16 0cn 8106 . . . . . . . . . . . . 13 0 ∈ ℂ
17 snssi 3791 . . . . . . . . . . . . 13 (0 ∈ ℂ → {0} ⊆ ℂ)
1816, 17mp1i 10 . . . . . . . . . . . 12 (𝜑 → {0} ⊆ ℂ)
1915, 18unssd 3360 . . . . . . . . . . 11 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5462 . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ)
22 elfznn0 10278 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
2322adantl 277 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2421, 23ffvelcdmd 5744 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
2524adantlr 477 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
26 simplr 528 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℂ)
2722adantl 277 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2826, 27expcld 10862 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥𝑘) ∈ ℂ)
2925, 28mulcld 8135 . . . . . 6 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
3011, 29fsumcl 11877 . . . . 5 ((𝜑𝑥 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
31 plycjlemc.f . . . . . 6 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
32 oveq1 5981 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑘) = (𝑥𝑘))
3332oveq2d 5990 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐴𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑥𝑘)))
3433sumeq2sdv 11847 . . . . . . 7 (𝑧 = 𝑥 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3534cbvmptv 4159 . . . . . 6 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))
3631, 35eqtrdi 2258 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
37 fveq2 5603 . . . . 5 (𝑧 = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) → (∗‘𝑧) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))
3830, 36, 6, 37fmptco 5774 . . . 4 (𝜑 → (∗ ∘ 𝐹) = (𝑥 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)))))
39 oveq1 5981 . . . . . . 7 (𝑥 = (∗‘𝑧) → (𝑥𝑘) = ((∗‘𝑧)↑𝑘))
4039oveq2d 5990 . . . . . 6 (𝑥 = (∗‘𝑧) → ((𝐴𝑘) · (𝑥𝑘)) = ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
4140sumeq2sdv 11847 . . . . 5 (𝑥 = (∗‘𝑧) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))
4241fveq2d 5607 . . . 4 (𝑥 = (∗‘𝑧) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))) = (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
433, 6, 38, 42fmptco 5774 . . 3 (𝜑 → ((∗ ∘ 𝐹) ∘ ∗) = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
441, 43eqtrid 2254 . 2 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))))
4510adantr 276 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin)
4624adantlr 477 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
472ad2antlr 489 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘𝑧) ∈ ℂ)
4822adantl 277 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
4947, 48expcld 10862 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘𝑧)↑𝑘) ∈ ℂ)
5046, 49mulcld 8135 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((∗‘𝑧)↑𝑘)) ∈ ℂ)
5145, 50fsumcj 11951 . . . 4 ((𝜑𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))))
5246, 49cjmuld 11443 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
5321adantlr 477 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴:ℕ0⟶ℂ)
54 fvco3 5678 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
5553, 48, 54syl2anc 411 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
5647, 48cjexpd 11435 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((∗‘𝑧)↑𝑘)) = ((∗‘(∗‘𝑧))↑𝑘))
57 cjcj 11360 . . . . . . . . . 10 (𝑧 ∈ ℂ → (∗‘(∗‘𝑧)) = 𝑧)
5857ad2antlr 489 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘(∗‘𝑧)) = 𝑧)
5958oveq1d 5989 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((∗‘(∗‘𝑧))↑𝑘) = (𝑧𝑘))
6056, 59eqtr2d 2243 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑧𝑘) = (∗‘((∗‘𝑧)↑𝑘)))
6155, 60oveq12d 5992 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)) = ((∗‘(𝐴𝑘)) · (∗‘((∗‘𝑧)↑𝑘))))
6252, 61eqtr4d 2245 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = (((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6362sumeq2dv 11845 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)(∗‘((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6451, 63eqtrd 2242 . . 3 ((𝜑𝑧 ∈ ℂ) → (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘))) = Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘)))
6564mpteq2dva 4153 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ (∗‘Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((∗‘𝑧)↑𝑘)))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
6644, 65eqtrd 2242 1 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cun 3175  wss 3177  {csn 3646  cmpt 4124  ccom 4700  wf 5290  cfv 5294  (class class class)co 5974  Fincfn 6857  cc 7965  0cc0 7967   · cmul 7972  0cn0 9337  ...cfz 10172  cexp 10727  ccj 11316  Σcsu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by:  plycj  15400
  Copyright terms: Public domain W3C validator