HomeHome Intuitionistic Logic Explorer
Theorem List (p. 153 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15201-15300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlogdivlti 15201 The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))
 
Theoremrelogcld 15202 Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (log‘𝐴) ∈ ℝ)
 
Theoremreeflogd 15203 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
 
Theoremrelogmuld 15204 The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵)))
 
Theoremrelogdivd 15205 The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (log‘(𝐴 / 𝐵)) = ((log‘𝐴) − (log‘𝐵)))
 
Theoremlogled 15206 Natural logarithm preserves . (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (𝐴𝐵 ↔ (log‘𝐴) ≤ (log‘𝐵)))
 
Theoremrelogefd 15207 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (log‘(exp‘𝐴)) = 𝐴)
 
Theoremrplogcld 15208 Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)       (𝜑 → (log‘𝐴) ∈ ℝ+)
 
Theoremlogge0d 15209 The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 ≤ 𝐴)       (𝜑 → 0 ≤ (log‘𝐴))
 
Theoremlogge0b 15210 The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → (0 ≤ (log‘𝐴) ↔ 1 ≤ 𝐴))
 
Theoremloggt0b 15211 The logarithm of a number is positive iff the number is greater than 1. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → (0 < (log‘𝐴) ↔ 1 < 𝐴))
 
Theoremlogle1b 15212 The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → ((log‘𝐴) ≤ 1 ↔ 𝐴 ≤ e))
 
Theoremloglt1b 15213 The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020.)
(𝐴 ∈ ℝ+ → ((log‘𝐴) < 1 ↔ 𝐴 < e))
 
Theoremrpcxpef 15214 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
 
Theoremcxpexprp 15215 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℤ) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
Theoremcxpexpnn 15216 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴𝑐𝐵) = (𝐴𝐵))
 
Theoremlogcxp 15217 Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
 
Theoremrpcxp0 15218 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
(𝐴 ∈ ℝ+ → (𝐴𝑐0) = 1)
 
Theoremrpcxp1 15219 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℝ+ → (𝐴𝑐1) = 𝐴)
 
Theorem1cxp 15220 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (1↑𝑐𝐴) = 1)
 
Theoremecxp 15221 Write the exponential function as an exponent to the power e. (Contributed by Mario Carneiro, 2-Aug-2014.)
(𝐴 ∈ ℂ → (e↑𝑐𝐴) = (exp‘𝐴))
 
Theoremrpcncxpcl 15222 Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
 
Theoremrpcxpcl 15223 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ+)
 
Theoremcxpap0 15224 Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐𝐵) # 0)
 
Theoremrpcxpadd 15225 Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 + 𝐶)) = ((𝐴𝑐𝐵) · (𝐴𝑐𝐶)))
 
Theoremrpcxpp1 15226 Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐(𝐵 + 1)) = ((𝐴𝑐𝐵) · 𝐴))
 
Theoremrpcxpneg 15227 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (𝐴𝑐-𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremrpcxpsub 15228 Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵𝐶)) = ((𝐴𝑐𝐵) / (𝐴𝑐𝐶)))
 
Theoremrpmulcxp 15229 Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
 
Theoremcxprec 15230 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremrpdivcxp 15231 Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℂ) → ((𝐴 / 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) / (𝐵𝑐𝐶)))
 
Theoremcxpmul 15232 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))
 
Theoremrpcxpmul2 15233 Product of exponents law for complex exponentiation. Variation on cxpmul 15232 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
 
Theoremrpcxproot 15234 The complex power function allows us to write n-th roots via the idiom 𝐴𝑐(1 / 𝑁). (Contributed by Mario Carneiro, 6-May-2015.)
((𝐴 ∈ ℝ+𝑁 ∈ ℕ) → ((𝐴𝑐(1 / 𝑁))↑𝑁) = 𝐴)
 
Theoremabscxp 15235 Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → (abs‘(𝐴𝑐𝐵)) = (𝐴𝑐(ℜ‘𝐵)))
 
Theoremcxplt 15236 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐵) < (𝐴𝑐𝐶)))
 
Theoremcxple 15237 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
(((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵𝐶 ↔ (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶)))
 
Theoremrpcxple2 15238 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
 
Theoremrpcxplt2 15239 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴𝑐𝐶) < (𝐵𝑐𝐶)))
 
Theoremcxplt3 15240 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
(((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))
 
Theoremcxple3 15241 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
(((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵𝐶 ↔ (𝐴𝑐𝐶) ≤ (𝐴𝑐𝐵)))
 
Theoremrpcxpsqrt 15242 The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.)
(𝐴 ∈ ℝ+ → (𝐴𝑐(1 / 2)) = (√‘𝐴))
 
Theoremlogsqrt 15243 Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.)
(𝐴 ∈ ℝ+ → (log‘(√‘𝐴)) = ((log‘𝐴) / 2))
 
Theoremrpcxp0d 15244 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴𝑐0) = 1)
 
Theoremrpcxp1d 15245 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (𝐴𝑐1) = 𝐴)
 
Theorem1cxpd 15246 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (1↑𝑐𝐴) = 1)
 
Theoremrpcncxpcld 15247 Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℂ)
 
Theoremcxpltd 15248 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐵) < (𝐴𝑐𝐶)))
 
Theoremcxpled 15249 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 1 < 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵𝐶 ↔ (𝐴𝑐𝐵) ≤ (𝐴𝑐𝐶)))
 
Theoremrpcxpsqrtth 15250 Square root theorem over the complex numbers for the complex power function. Compare with resqrtth 11213. (Contributed by AV, 23-Dec-2022.)
(𝐴 ∈ ℝ+ → ((√‘𝐴)↑𝑐2) = 𝐴)
 
Theoremcxprecd 15251 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
 
Theoremrpcxpmul2d 15252 Product of exponents law for complex exponentiation. Variation on cxpmul 15232 with more general conditions on 𝐴 and 𝐵 when 𝐶 is a nonnegative integer. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℕ0)       (𝜑 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝐶))
 
Theoremrpcxpcld 15253 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝑐𝐵) ∈ ℝ+)
 
Theoremlogcxpd 15254 Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
 
Theoremcxplt3d 15255 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))
 
Theoremcxple3d 15256 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 1)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → (𝐵𝐶 ↔ (𝐴𝑐𝐶) ≤ (𝐴𝑐𝐵)))
 
Theoremcxpmuld 15257 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))
 
Theoremcxpcom 15258 Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝑐𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶)↑𝑐𝐵))
 
Theoremapcxp2 15259 Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
(((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 # 𝐶 ↔ (𝐴𝑐𝐵) # (𝐴𝑐𝐶)))
 
Theoremrpabscxpbnd 15260 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → 0 < (ℜ‘𝐵))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → (abs‘𝐴) ≤ 𝑀)       (𝜑 → (abs‘(𝐴𝑐𝐵)) ≤ ((𝑀𝑐(ℜ‘𝐵)) · (exp‘((abs‘𝐵) · π))))
 
Theoremltexp2 15261 Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
(((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
 
Theoremltexp2d 15262 Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → 1 < 𝐴)       (𝜑 → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
 
11.2.4  Logarithms to an arbitrary base

Define "log using an arbitrary base" function and then prove some of its properties. As with df-relog 15178 this is for real logarithms rather than complex logarithms.

Metamath doesn't care what letters are used to represent classes. Usually classes begin with the letter "A", but here we use "B" and "X" to more clearly distinguish between "base" and "other parameter of log".

There are different ways this could be defined in Metamath. The approach used here is intentionally similar to existing 2-parameter Metamath functions (operations): (𝐵 logb 𝑋) where 𝐵 is the base and 𝑋 is the argument of the logarithm function. An alternative would be to support the notational form (( logb𝐵)‘𝑋); that looks a little more like traditional notation.

 
Syntaxclogb 15263 Extend class notation to include the logarithm generalized to an arbitrary base.
class logb
 
Definitiondf-logb 15264* Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as (𝐵 logb 𝑋) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition will only be useful where 𝑥 is a positive real apart from one and where 𝑦 is a positive real, so the choice of (ℂ ∖ {0, 1}) and (ℂ ∖ {0}) is somewhat arbitrary (we adopt the definition used in set.mm). (Contributed by David A. Wheeler, 21-Jan-2017.)
logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
 
Theoremrplogbval 15265 Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 
Theoremrplogbcl 15266 General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
 
Theoremrplogbid1 15267 General logarithm is 1 when base and arg match. Property 1(a) of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by David A. Wheeler, 22-Jul-2017.)
((𝐴 ∈ ℝ+𝐴 # 1) → (𝐴 logb 𝐴) = 1)
 
Theoremrplogb1 15268 The logarithm of 1 to an arbitrary base 𝐵 is 0. Property 1(b) of [Cohen4] p. 361. See log1 15186. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ ℝ+𝐵 # 1) → (𝐵 logb 1) = 0)
 
Theoremrpelogb 15269 The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using e as the base in logb is the same as log. Definition in [Cohen4] p. 352. (Contributed by David A. Wheeler, 17-Oct-2017.) (Revised by David A. Wheeler and AV, 16-Jun-2020.)
(𝐴 ∈ ℝ+ → (e logb 𝐴) = (log‘𝐴))
 
Theoremrplogbchbase 15270 Change of base for logarithms. Property in [Cohen4] p. 367. (Contributed by AV, 11-Jun-2020.)
(((𝐴 ∈ ℝ+𝐴 # 1) ∧ (𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+) → (𝐴 logb 𝑋) = ((𝐵 logb 𝑋) / (𝐵 logb 𝐴)))
 
Theoremrelogbval 15271 Value of the general logarithm with integer base. (Contributed by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
 
Theoremrelogbzcl 15272 Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017.) (Proof shortened by AV, 9-Jun-2020.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+) → (𝐵 logb 𝑋) ∈ ℝ)
 
Theoremrplogbreexp 15273 Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝐶 ∈ ℝ+𝐸 ∈ ℝ) → (𝐵 logb (𝐶𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶)))
 
Theoremrplogbzexp 15274 Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝐶 ∈ ℝ+𝑁 ∈ ℤ) → (𝐵 logb (𝐶𝑁)) = (𝑁 · (𝐵 logb 𝐶)))
 
Theoremrprelogbmul 15275 The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶)))
 
Theoremrprelogbmulexp 15276 The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+𝐸 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶𝑐𝐸))) = ((𝐵 logb 𝐴) + (𝐸 · (𝐵 logb 𝐶))))
 
Theoremrprelogbdiv 15277 The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))
 
Theoremrelogbexpap 15278 Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵𝑀)) = 𝑀)
 
Theoremnnlogbexp 15279 Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵𝑀)) = 𝑀)
 
Theoremlogbrec 15280 Logarithm of a reciprocal changes sign. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴))
 
Theoremlogbleb 15281 The general logarithm function is monotone/increasing. See logleb 15195. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌)))
 
Theoremlogblt 15282 The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 15194. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
((𝐵 ∈ (ℤ‘2) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌)))
 
Theoremrplogbcxp 15283 Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ) → (𝐵 logb (𝐵𝑐𝑋)) = 𝑋)
 
Theoremrpcxplogb 15284 Identity law for the general logarithm. (Contributed by AV, 22-May-2020.)
((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝑋 ∈ ℝ+) → (𝐵𝑐(𝐵 logb 𝑋)) = 𝑋)
 
Theoremrelogbcxpbap 15285 The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.)
(((𝐵 ∈ ℝ+𝐵 # 1) ∧ 𝑋 ∈ ℝ+𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵𝑐𝑌) = 𝑋))
 
Theoremlogbgt0b 15286 The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.)
((𝐴 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝐴) ↔ 1 < 𝐴))
 
Theoremlogbgcd1irr 15287 The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ). (Contributed by AV, 29-Dec-2022.)
((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
 
Theoremlogbgcd1irraplemexp 15288 Lemma for logbgcd1irrap 15290. Apartness of 𝑋𝑁 and 𝐵𝑀. (Contributed by Jim Kingdon, 11-Jul-2024.)
(𝜑𝑋 ∈ (ℤ‘2))    &   (𝜑𝐵 ∈ (ℤ‘2))    &   (𝜑 → (𝑋 gcd 𝐵) = 1)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝑋𝑁) # (𝐵𝑀))
 
Theoremlogbgcd1irraplemap 15289 Lemma for logbgcd1irrap 15290. The result, with the rational number expressed as numerator and denominator. (Contributed by Jim Kingdon, 9-Jul-2024.)
(𝜑𝑋 ∈ (ℤ‘2))    &   (𝜑𝐵 ∈ (ℤ‘2))    &   (𝜑 → (𝑋 gcd 𝐵) = 1)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (𝐵 logb 𝑋) # (𝑀 / 𝑁))
 
Theoremlogbgcd1irrap 15290 The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.)
(((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄)
 
Theorem2logb9irr 15291 Example for logbgcd1irr 15287. The logarithm of nine to base two is not rational. Also see 2logb9irrap 15297 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.)
(2 logb 9) ∈ (ℝ ∖ ℚ)
 
Theoremlogbprmirr 15292 The logarithm of a prime to a different prime base is not rational. For example, (2 logb 3) ∈ (ℝ ∖ ℚ) (see 2logb3irr 15293). (Contributed by AV, 31-Dec-2022.)
((𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋𝐵) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ))
 
Theorem2logb3irr 15293 Example for logbprmirr 15292. The logarithm of three to base two is not rational. (Contributed by AV, 31-Dec-2022.)
(2 logb 3) ∈ (ℝ ∖ ℚ)
 
Theorem2logb9irrALT 15294 Alternate proof of 2logb9irr 15291: The logarithm of nine to base two is not rational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(2 logb 9) ∈ (ℝ ∖ ℚ)
 
Theoremsqrt2cxp2logb9e3 15295 The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are not rational (see sqrt2irr0 12357 resp. 2logb9irr 15291), satisfying the statement in 2irrexpq 15296. (Contributed by AV, 29-Dec-2022.)
((√‘2)↑𝑐(2 logb 9)) = 3
 
Theorem2irrexpq 15296* There exist real numbers 𝑎 and 𝑏 which are not rational such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named non-rational numbers (√‘2) and (2 logb 9), see sqrt2irr0 12357, 2logb9irr 15291 and sqrt2cxp2logb9e3 15295. Therefore, this proof is acceptable/usable in intuitionistic logic.

For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 15298. (Contributed by AV, 23-Dec-2022.)

𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
 
Theorem2logb9irrap 15297 Example for logbgcd1irrap 15290. The logarithm of nine to base two is irrational (in the sense of being apart from any rational number). (Contributed by Jim Kingdon, 12-Jul-2024.)
(𝑄 ∈ ℚ → (2 logb 9) # 𝑄)
 
Theorem2irrexpqap 15298* There exist real numbers 𝑎 and 𝑏 which are irrational (in the sense of being apart from any rational number) such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irrap 12373, 2logb9irrap 15297 and sqrt2cxp2logb9e3 15295. Therefore, this proof is acceptable/usable in intuitionistic logic. (Contributed by Jim Kingdon, 12-Jul-2024.)
𝑎 ∈ ℝ ∃𝑏 ∈ ℝ (∀𝑝 ∈ ℚ 𝑎 # 𝑝 ∧ ∀𝑞 ∈ ℚ 𝑏 # 𝑞 ∧ (𝑎𝑐𝑏) ∈ ℚ)
 
11.2.5  Quartic binomial expansion
 
Theorembinom4 15299 Work out a quartic binomial. (You would think that by this point it would be faster to use binom 11666, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
 
11.3  Basic number theory
 
11.3.1  Wilson's theorem
 
Theoremwilthlem1 15300 The only elements that are equal to their own inverses in the multiplicative group of nonzero elements in ℤ / 𝑃 are 1 and -1≡𝑃 − 1. (Note that from prmdiveq 12429, (𝑁↑(𝑃 − 2)) mod 𝑃 is the modular inverse of 𝑁 in ℤ / 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1...(𝑃 − 1))) → (𝑁 = ((𝑁↑(𝑃 − 2)) mod 𝑃) ↔ (𝑁 = 1 ∨ 𝑁 = (𝑃 − 1))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >