HomeHome Intuitionistic Logic Explorer
Theorem List (p. 153 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15201-15300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdvbss 15201 The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐹:𝐴⟶ℂ)    &   (𝜑𝐴𝑆)       (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
 
Theoremdvbsssg 15202 The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom (𝑆 D 𝐹) ⊆ 𝑆)
 
Theoremrecnprss 15203 Both and are subsets of . (Contributed by Mario Carneiro, 10-Feb-2015.)
(𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
 
Theoremdvfgg 15204 Explicitly write out the functionality condition on derivative for 𝑆 = ℝ and . (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jun-2023.)
((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
 
Theoremdvfpm 15205 The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
 
Theoremdvfcnpm 15206 The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 28-Jul-2023.)
(𝐹 ∈ (ℂ ↑pm ℂ) → (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ)
 
Theoremdvidlemap 15207* Lemma for dvid 15211 and dvconst 15210. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝜑𝐹:ℂ⟶ℂ)    &   ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (ℂ D 𝐹) = (ℂ × {𝐵}))
 
Theoremdvidrelem 15208* Lemma for dvidre 15213 and dvconstre 15212. Analogue of dvidlemap 15207 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵}))
 
Theoremdvidsslem 15209* Lemma for dvconstss 15214. Analogue of dvidlemap 15207 where 𝐹 is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝐽)    &   ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)    &   𝐵 ∈ ℂ       (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
 
Theoremdvconst 15210 Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
 
Theoremdvid 15211 Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
(ℂ D ( I ↾ ℂ)) = (ℂ × {1})
 
Theoremdvconstre 15212 Real derivative of a constant function. (Contributed by Jim Kingdon, 3-Oct-2025.)
(𝐴 ∈ ℂ → (ℝ D (ℝ × {𝐴})) = (ℝ × {0}))
 
Theoremdvidre 15213 Real derivative of the identity function. (Contributed by Jim Kingdon, 3-Oct-2025.)
(ℝ D ( I ↾ ℝ)) = (ℝ × {1})
 
Theoremdvconstss 15214 Derivative of a constant function defined on an open set. (Contributed by Jim Kingdon, 6-Oct-2025.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   𝐽 = (𝐾t 𝑆)    &   𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝑋𝐽)    &   (𝜑𝐴 ∈ ℂ)       (𝜑 → (𝑆 D (𝑋 × {𝐴})) = (𝑋 × {0}))
 
Theoremdvcnp2cntop 15215 A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
𝐽 = (𝐾t 𝐴)    &   𝐾 = (MetOpen‘(abs ∘ − ))       (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ 𝐵 ∈ dom (𝑆 D 𝐹)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
 
Theoremdvcn 15216 A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.)
(((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ ∧ 𝐴𝑆) ∧ dom (𝑆 D 𝐹) = 𝐴) → 𝐹 ∈ (𝐴cn→ℂ))
 
Theoremdvaddxxbr 15217 The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
 
Theoremdvmulxxbr 15218 The product rule for derivatives at a point. For the (simpler but more limited) function version, see dvmulxx 15220. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 1-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝐶(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑆 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑆 D (𝐹𝑓 · 𝐺))((𝐾 · (𝐺𝐶)) + (𝐿 · (𝐹𝐶))))
 
Theoremdvaddxx 15219 The sum rule for derivatives at a point. For the (more general) relation version, see dvaddxxbr 15217. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 + 𝐺))‘𝐶) = (((𝑆 D 𝐹)‘𝐶) + ((𝑆 D 𝐺)‘𝐶)))
 
Theoremdvmulxx 15220 The product rule for derivatives at a point. For the (more general) relation version, see dvmulxxbr 15218. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 2-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐹))    &   (𝜑𝐶 ∈ dom (𝑆 D 𝐺))       (𝜑 → ((𝑆 D (𝐹𝑓 · 𝐺))‘𝐶) = ((((𝑆 D 𝐹)‘𝐶) · (𝐺𝐶)) + (((𝑆 D 𝐺)‘𝐶) · (𝐹𝐶))))
 
Theoremdviaddf 15221 The sum rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝑆)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑 → dom (𝑆 D 𝐹) = 𝑋)    &   (𝜑 → dom (𝑆 D 𝐺) = 𝑋)       (𝜑 → (𝑆 D (𝐹𝑓 + 𝐺)) = ((𝑆 D 𝐹) ∘𝑓 + (𝑆 D 𝐺)))
 
Theoremdvimulf 15222 The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝑆)    &   (𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝐺:𝑋⟶ℂ)    &   (𝜑 → dom (𝑆 D 𝐹) = 𝑋)    &   (𝜑 → dom (𝑆 D 𝐺) = 𝑋)       (𝜑 → (𝑆 D (𝐹𝑓 · 𝐺)) = (((𝑆 D 𝐹) ∘𝑓 · 𝐺) ∘𝑓 + ((𝑆 D 𝐺) ∘𝑓 · 𝐹)))
 
Theoremdvcoapbr 15223* The chain rule for derivatives at a point. The 𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶) hypothesis constrains what functions work for 𝐺. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋𝑆)    &   (𝜑𝐺:𝑌𝑋)    &   (𝜑𝑌𝑇)    &   (𝜑 → ∀𝑢𝑌 (𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)))    &   (𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑇 ⊆ ℂ)    &   (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)    &   (𝜑𝐶(𝑇 D 𝐺)𝐿)    &   𝐽 = (MetOpen‘(abs ∘ − ))       (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
 
Theoremdvcjbr 15224 The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 15225. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝜑𝐹:𝑋⟶ℂ)    &   (𝜑𝑋 ⊆ ℝ)    &   (𝜑𝐶 ∈ dom (ℝ D 𝐹))       (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
 
Theoremdvcj 15225 The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 15224. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
 
Theoremdvfre 15226 The derivative of a real function is real. (Contributed by Mario Carneiro, 1-Sep-2014.)
((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
 
Theoremdvexp 15227* Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
 
Theoremdvexp2 15228* Derivative of an exponential, possibly zero power. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
(𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
 
Theoremdvrecap 15229* Derivative of the reciprocal function. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 28-Dec-2016.)
(𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ (𝐴 / 𝑥))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ↦ -(𝐴 / (𝑥↑2))))
 
Theoremdvmptidcn 15230 Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1)
 
Theoremdvmptccn 15231* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 30-Dec-2023.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 0))
 
Theoremdvmptid 15232* Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})       (𝜑 → (𝑆 D (𝑥𝑆𝑥)) = (𝑥𝑆 ↦ 1))
 
Theoremdvmptc 15233* Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝐴 ∈ ℂ)       (𝜑 → (𝑆 D (𝑥𝑆𝐴)) = (𝑥𝑆 ↦ 0))
 
Theoremdvmptclx 15234* Closure lemma for dvmptmulx 15236 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)       ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
 
Theoremdvmptaddx 15235* Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 + 𝐶))) = (𝑥𝑋 ↦ (𝐵 + 𝐷)))
 
Theoremdvmptmulx 15236* Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋𝑆)    &   ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐷𝑊)    &   (𝜑 → (𝑆 D (𝑥𝑋𝐶)) = (𝑥𝑋𝐷))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 · 𝐶))) = (𝑥𝑋 ↦ ((𝐵 · 𝐶) + (𝐷 · 𝐴))))
 
Theoremdvmptcmulcn 15237* Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐶 · 𝐴))) = (𝑥 ∈ ℂ ↦ (𝐶 · 𝐵)))
 
Theoremdvmptnegcn 15238* Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ -𝐴)) = (𝑥 ∈ ℂ ↦ -𝐵))
 
Theoremdvmptsubcn 15239* Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 31-Dec-2023.)
((𝜑𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐵𝑉)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐴)) = (𝑥 ∈ ℂ ↦ 𝐵))    &   ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)    &   ((𝜑𝑥 ∈ ℂ) → 𝐷𝑊)    &   (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝐶)) = (𝑥 ∈ ℂ ↦ 𝐷))       (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝐶))) = (𝑥 ∈ ℂ ↦ (𝐵𝐷)))
 
Theoremdvmptcjx 15240* Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Jim Kingdon, 24-May-2024.)
((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑥𝑋) → 𝐵𝑉)    &   (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))    &   (𝜑𝑋 ⊆ ℝ)       (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
 
Theoremdvmptfsum 15241* Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
𝐽 = (𝐾t 𝑆)    &   𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋𝐽)    &   (𝜑𝐼 ∈ Fin)    &   ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)    &   ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)    &   ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))       (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
 
Theoremdveflem 15242 Derivative of the exponential function at 0. The key step in the proof is eftlub 12045, to show that abs(exp(𝑥) − 1 − 𝑥) ≤ abs(𝑥)↑2 · (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
0(ℂ D exp)1
 
Theoremdvef 15243 Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
(ℂ D exp) = exp
 
PART 11  BASIC REAL AND COMPLEX FUNCTIONS
 
11.1  Polynomials
 
11.1.1  Elementary properties of complex polynomials
 
Syntaxcply 15244 Extend class notation to include the set of complex polynomials.
class Poly
 
Syntaxcidp 15245 Extend class notation to include the identity polynomial.
class Xp
 
Definitiondf-ply 15246* Define the set of polynomials on the complex numbers with coefficients in the given subset. (Contributed by Mario Carneiro, 17-Jul-2014.)
Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Definitiondf-idp 15247 Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Xp = ( I ↾ ℂ)
 
Theoremplyval 15248* Value of the polynomial set function. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝑆 ⊆ ℂ → (Poly‘𝑆) = {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
 
Theoremplybss 15249 Reverse closure of the parameter 𝑆 of the polynomial set function. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
 
Theoremelply 15250* Definition of a polynomial with coefficients in 𝑆. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
 
Theoremelply2 15251* The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
 
Theoremplyun0 15252 The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
(Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
 
Theoremplyf 15253 A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
(𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
 
Theoremplyss 15254 The polynomial set function preserves the subset relation. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆𝑇𝑇 ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘𝑇))
 
Theoremplyssc 15255 Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
(Poly‘𝑆) ⊆ (Poly‘ℂ)
 
Theoremelplyr 15256* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
((𝑆 ⊆ ℂ ∧ 𝑁 ∈ ℕ0𝐴:ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremelplyd 15257* Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
(𝜑𝑆 ⊆ ℂ)    &   (𝜑𝑁 ∈ ℕ0)    &   ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴𝑆)       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧𝑘))) ∈ (Poly‘𝑆))
 
Theoremply1termlem 15258* Lemma for ply1term 15259. (Contributed by Mario Carneiro, 26-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(if(𝑘 = 𝑁, 𝐴, 0) · (𝑧𝑘))))
 
Theoremply1term 15259* A one-term polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
𝐹 = (𝑧 ∈ ℂ ↦ (𝐴 · (𝑧𝑁)))       ((𝑆 ⊆ ℂ ∧ 𝐴𝑆𝑁 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
 
Theoremplypow 15260* A power is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆𝑁 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ (𝑧𝑁)) ∈ (Poly‘𝑆))
 
Theoremplyconst 15261 A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 𝐴𝑆) → (ℂ × {𝐴}) ∈ (Poly‘𝑆))
 
Theoremplyid 15262 The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
((𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆) → Xp ∈ (Poly‘𝑆))
 
Theoremplyaddlem1 15263* Derive the coefficient function for the sum of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴𝑓 + 𝐵)‘𝑘) · (𝑧𝑘))))
 
Theoremplymullem1 15264* Derive the coefficient function for the product of two polynomials. (Contributed by Mario Carneiro, 23-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑𝐵:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴𝑘) · (𝐵‘(𝑛𝑘))) · (𝑧𝑛))))
 
Theoremplyaddlem 15265* Lemma for plyadd 15267. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymullem 15266* Lemma for plymul 15268. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑𝑚0))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})    &   (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplyadd 15267* The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 + 𝐺) ∈ (Poly‘𝑆))
 
Theoremplymul 15268* The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝑓 · 𝐺) ∈ (Poly‘𝑆))
 
Theoremplysub 15269* The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑 → -1 ∈ 𝑆)       (𝜑 → (𝐹𝑓𝐺) ∈ (Poly‘𝑆))
 
Theoremplyaddcl 15270 The sum of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 + 𝐺) ∈ (Poly‘ℂ))
 
Theoremplymulcl 15271 The product of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
 
Theoremplysubcl 15272 The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓𝐺) ∈ (Poly‘ℂ))
 
Theoremplycoeid3 15273* Reconstruct a polynomial as an explicit sum of the coefficient function up to an index no smaller than the degree of the polynomial. (Contributed by Jim Kingdon, 17-Oct-2025.)
(𝜑𝐷 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶ℂ)    &   (𝜑 → (𝐴 “ (ℤ‘(𝐷 + 1))) = {0})    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝐷)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝑀 ∈ (ℤ𝐷))    &   (𝜑𝑋 ∈ ℂ)       (𝜑 → (𝐹𝑋) = Σ𝑗 ∈ (0...𝑀)((𝐴𝑗) · (𝑋𝑗)))
 
Theoremplycolemc 15274* Lemma for plyco 15275. The result expressed as a sum, with a degree and coefficients for 𝐹 specified as hypotheses. (Contributed by Jim Kingdon, 20-Sep-2025.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})    &   (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑥𝑘))))       (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
 
Theoremplyco 15275* The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
(𝜑𝐹 ∈ (Poly‘𝑆))    &   (𝜑𝐺 ∈ (Poly‘𝑆))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)       (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
 
Theoremplycjlemc 15276* Lemma for plycj 15277. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Jim Kingdon, 22-Sep-2025.)
(𝜑𝑁 ∈ ℕ0)    &   𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))    &   (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐹 ∈ (Poly‘𝑆))       (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
 
Theoremplycj 15277* The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
𝐺 = ((∗ ∘ 𝐹) ∘ ∗)    &   ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)    &   (𝜑𝐹 ∈ (Poly‘𝑆))       (𝜑𝐺 ∈ (Poly‘𝑆))
 
Theoremplycn 15278 A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 8055. (Revised by GG, 16-Mar-2025.)
(𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremplyrecj 15279 A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
((𝐹 ∈ (Poly‘ℝ) ∧ 𝐴 ∈ ℂ) → (∗‘(𝐹𝐴)) = (𝐹‘(∗‘𝐴)))
 
Theoremplyreres 15280 Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ)
 
Theoremdvply1 15281* Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
(𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))    &   (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑁 − 1))((𝐵𝑘) · (𝑧𝑘))))    &   (𝜑𝐴:ℕ0⟶ℂ)    &   𝐵 = (𝑘 ∈ ℕ0 ↦ ((𝑘 + 1) · (𝐴‘(𝑘 + 1))))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (ℂ D 𝐹) = 𝐺)
 
Theoremdvply2g 15282 The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
 
Theoremdvply2 15283 The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014.) (Proof shortened by Mario Carneiro, 1-Jan-2017.)
(𝐹 ∈ (Poly‘𝑆) → (ℂ D 𝐹) ∈ (Poly‘ℂ))
 
11.2  Basic trigonometry
 
11.2.1  The exponential, sine, and cosine functions (cont.)
 
Theoremefcn 15284 The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.)
exp ∈ (ℂ–cn→ℂ)
 
Theoremsincn 15285 Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
sin ∈ (ℂ–cn→ℂ)
 
Theoremcoscn 15286 Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
cos ∈ (ℂ–cn→ℂ)
 
Theoremreeff1olem 15287* Lemma for reeff1o 15289. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
((𝑈 ∈ ℝ ∧ 1 < 𝑈) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
Theoremreeff1oleme 15288* Lemma for reeff1o 15289. (Contributed by Jim Kingdon, 15-May-2024.)
(𝑈 ∈ (0(,)e) → ∃𝑥 ∈ ℝ (exp‘𝑥) = 𝑈)
 
Theoremreeff1o 15289 The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
(exp ↾ ℝ):ℝ–1-1-onto→ℝ+
 
Theoremefltlemlt 15290 Lemma for eflt 15291. The converse of efltim 12053 plus the epsilon-delta setup. (Contributed by Jim Kingdon, 22-May-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (exp‘𝐴) < (exp‘𝐵))    &   (𝜑𝐷 ∈ ℝ+)    &   (𝜑 → ((abs‘(𝐴𝐵)) < 𝐷 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))       (𝜑𝐴 < 𝐵)
 
Theoremeflt 15291 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
 
Theoremefle 15292 The exponential function on the reals is nondecreasing. (Contributed by Mario Carneiro, 11-Mar-2014.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (exp‘𝐴) ≤ (exp‘𝐵)))
 
Theoremreefiso 15293 The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.)
(exp ↾ ℝ) Isom < , < (ℝ, ℝ+)
 
Theoremreapef 15294 Apartness and the exponential function for reals. (Contributed by Jim Kingdon, 11-Jul-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (exp‘𝐴) # (exp‘𝐵)))
 
11.2.2  Properties of pi = 3.14159...
 
Theorempilem1 15295 Lemma for pire , pigt2lt4 and sinpi . (Contributed by Mario Carneiro, 9-May-2014.)
(𝐴 ∈ (ℝ+ ∩ (sin “ {0})) ↔ (𝐴 ∈ ℝ+ ∧ (sin‘𝐴) = 0))
 
Theoremcosz12 15296 Cosine has a zero between 1 and 2. (Contributed by Mario Carneiro and Jim Kingdon, 7-Mar-2024.)
𝑝 ∈ (1(,)2)(cos‘𝑝) = 0
 
Theoremsin0pilem1 15297* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑝 ∈ (1(,)2)((cos‘𝑝) = 0 ∧ ∀𝑥 ∈ (𝑝(,)(2 · 𝑝))0 < (sin‘𝑥))
 
Theoremsin0pilem2 15298* Lemma for pi related theorems. (Contributed by Mario Carneiro and Jim Kingdon, 8-Mar-2024.)
𝑞 ∈ (2(,)4)((sin‘𝑞) = 0 ∧ ∀𝑥 ∈ (0(,)𝑞)0 < (sin‘𝑥))
 
Theorempilem3 15299 Lemma for pi related theorems. (Contributed by Jim Kingdon, 9-Mar-2024.)
(π ∈ (2(,)4) ∧ (sin‘π) = 0)
 
Theorempigt2lt4 15300 π is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.)
(2 < π ∧ π < 4)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >