ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycn GIF version

Theorem plycn 15444
Description: A polynomial is a continuous function. (Contributed by Mario Carneiro, 23-Jul-2014.) Avoid ax-mulf 8130. (Revised by GG, 16-Mar-2025.)
Assertion
Ref Expression
plycn (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))

Proof of Theorem plycn
Dummy variables 𝑎 𝑑 𝑘 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 15416 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 275 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘))))
3 simpr 110 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘))))
4 eqid 2229 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54cnfldtopon 15222 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
65a1i 9 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
7 0zd 9466 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 0 ∈ ℤ)
8 simprl 529 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑑 ∈ ℕ0)
98nn0zd 9575 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑑 ∈ ℤ)
107, 9fzfigd 10661 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (0...𝑑) ∈ Fin)
115a1i 9 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 elmapi 6825 . . . . . . . . . . . . . 14 (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
1312ad2antll 491 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
14 plybss 15415 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
1514adantr 276 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑆 ⊆ ℂ)
16 0cnd 8147 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 0 ∈ ℂ)
1716snssd 3813 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → {0} ⊆ ℂ)
1815, 17unssd 3380 . . . . . . . . . . . . 13 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑆 ∪ {0}) ⊆ ℂ)
1913, 18fssd 5486 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑎:ℕ0⟶ℂ)
2019adantr 276 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → 𝑎:ℕ0⟶ℂ)
21 elfznn0 10318 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑑) → 𝑘 ∈ ℕ0)
2221adantl 277 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → 𝑘 ∈ ℕ0)
2320, 22ffvelcdmd 5773 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑎𝑘) ∈ ℂ)
2411, 11, 23cnmptc 14964 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ (𝑎𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
254expcn 15251 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2622, 25syl 14 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
274mpomulcn 15248 . . . . . . . . . 10 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
2827a1i 9 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
29 oveq12 6016 . . . . . . . . 9 ((𝑢 = (𝑎𝑘) ∧ 𝑣 = (𝑧𝑘)) → (𝑢 · 𝑣) = ((𝑎𝑘) · (𝑧𝑘)))
3011, 24, 26, 11, 11, 28, 29cnmpt12 14969 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
314, 6, 10, 30fsumcn 15250 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3231adantr 276 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
333, 32eqeltrd 2306 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘)))) → 𝐹 ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
344cncfcn1 15277 . . . . 5 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3533, 34eleqtrrdi 2323 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘)))) → 𝐹 ∈ (ℂ–cn→ℂ))
3635ex 115 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘))) → 𝐹 ∈ (ℂ–cn→ℂ)))
3736rexlimdvva 2656 . 2 (𝐹 ∈ (Poly‘𝑆) → (∃𝑑 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎𝑘) · (𝑧𝑘))) → 𝐹 ∈ (ℂ–cn→ℂ)))
382, 37mpd 13 1 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  cun 3195  wss 3197  {csn 3666  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6007  cmpo 6009  𝑚 cmap 6803  cc 8005  0cc0 8007   · cmul 8012  0cn0 9377  ...cfz 10212  cexp 10768  Σcsu 11872  TopOpenctopn 13281  fldccnfld 14528  TopOnctopon 14692   Cn ccn 14867   ×t ctx 14934  cnccncf 15252  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-rest 13282  df-topn 13283  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-top 14680  df-topon 14693  df-topsp 14713  df-bases 14725  df-cn 14870  df-cnp 14871  df-tx 14935  df-xms 15021  df-ms 15022  df-cncf 15253  df-ply 15412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator