Step | Hyp | Ref
| Expression |
1 | | elply 14905 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
2 | 1 | simprbi 275 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
3 | | simpr 110 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
4 | | eqid 2193 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
5 | 4 | cnfldtopon 14719 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
6 | 5 | a1i 9 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
7 | | 0zd 9332 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 0 ∈ ℤ) |
8 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑑 ∈ ℕ0) |
9 | 8 | nn0zd 9440 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑑 ∈ ℤ) |
10 | 7, 9 | fzfigd 10505 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (0...𝑑) ∈ Fin) |
11 | 5 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
12 | | elmapi 6726 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
13 | 12 | ad2antll 491 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
14 | | plybss 14904 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
15 | 14 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑆 ⊆ ℂ) |
16 | | 0cnd 8014 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 0 ∈ ℂ) |
17 | 16 | snssd 3764 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → {0} ⊆ ℂ) |
18 | 15, 17 | unssd 3336 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑆 ∪ {0}) ⊆
ℂ) |
19 | 13, 18 | fssd 5417 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑎:ℕ0⟶ℂ) |
20 | 19 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → 𝑎:ℕ0⟶ℂ) |
21 | | elfznn0 10183 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑑) → 𝑘 ∈ ℕ0) |
22 | 21 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → 𝑘 ∈ ℕ0) |
23 | 20, 22 | ffvelcdmd 5695 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑎‘𝑘) ∈ ℂ) |
24 | 11, 11, 23 | cnmptc 14461 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ (𝑎‘𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
25 | 4 | expcn 14748 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑧 ∈ ℂ
↦ (𝑧↑𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
26 | 22, 25 | syl 14 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
27 | 4 | mpomulcn 14745 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
28 | 27 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
29 | | oveq12 5928 |
. . . . . . . . 9
⊢ ((𝑢 = (𝑎‘𝑘) ∧ 𝑣 = (𝑧↑𝑘)) → (𝑢 · 𝑣) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
30 | 11, 24, 26, 11, 11, 28, 29 | cnmpt12 14466 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
31 | 4, 6, 10, 30 | fsumcn 14747 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
32 | 31 | adantr 276 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
33 | 3, 32 | eqeltrd 2270 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
34 | 4 | cncfcn1 14774 |
. . . . 5
⊢
(ℂ–cn→ℂ) =
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
35 | 33, 34 | eleqtrrdi 2287 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 ∈ (ℂ–cn→ℂ)) |
36 | 35 | ex 115 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹 ∈ (ℂ–cn→ℂ))) |
37 | 36 | rexlimdvva 2619 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑑 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹 ∈ (ℂ–cn→ℂ))) |
38 | 2, 37 | mpd 13 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) |