| Step | Hyp | Ref
| Expression |
| 1 | | elply 14970 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 2 | 1 | simprbi 275 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 3 | | simpr 110 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 4 | | eqid 2196 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 5 | 4 | cnfldtopon 14776 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 6 | 5 | a1i 9 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
| 7 | | 0zd 9338 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 0 ∈ ℤ) |
| 8 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑑 ∈ ℕ0) |
| 9 | 8 | nn0zd 9446 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑑 ∈ ℤ) |
| 10 | 7, 9 | fzfigd 10523 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (0...𝑑) ∈ Fin) |
| 11 | 5 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
| 12 | | elmapi 6729 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 13 | 12 | ad2antll 491 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 14 | | plybss 14969 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| 15 | 14 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑆 ⊆ ℂ) |
| 16 | | 0cnd 8019 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 0 ∈ ℂ) |
| 17 | 16 | snssd 3767 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → {0} ⊆ ℂ) |
| 18 | 15, 17 | unssd 3339 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 19 | 13, 18 | fssd 5420 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑎:ℕ0⟶ℂ) |
| 20 | 19 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → 𝑎:ℕ0⟶ℂ) |
| 21 | | elfznn0 10189 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑑) → 𝑘 ∈ ℕ0) |
| 22 | 21 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → 𝑘 ∈ ℕ0) |
| 23 | 20, 22 | ffvelcdmd 5698 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑎‘𝑘) ∈ ℂ) |
| 24 | 11, 11, 23 | cnmptc 14518 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ (𝑎‘𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 25 | 4 | expcn 14805 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑧 ∈ ℂ
↦ (𝑧↑𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 26 | 22, 25 | syl 14 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ (𝑧↑𝑘)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 27 | 4 | mpomulcn 14802 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 28 | 27 | a1i 9 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 29 | | oveq12 5931 |
. . . . . . . . 9
⊢ ((𝑢 = (𝑎‘𝑘) ∧ 𝑣 = (𝑧↑𝑘)) → (𝑢 · 𝑣) = ((𝑎‘𝑘) · (𝑧↑𝑘))) |
| 30 | 11, 24, 26, 11, 11, 28, 29 | cnmpt12 14523 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑘 ∈ (0...𝑑)) → (𝑧 ∈ ℂ ↦ ((𝑎‘𝑘) · (𝑧↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 31 | 4, 6, 10, 30 | fsumcn 14804 |
. . . . . . 7
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 32 | 31 | adantr 276 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 33 | 3, 32 | eqeltrd 2273 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 34 | 4 | cncfcn1 14831 |
. . . . 5
⊢
(ℂ–cn→ℂ) =
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
| 35 | 33, 34 | eleqtrrdi 2290 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 ∈ (ℂ–cn→ℂ)) |
| 36 | 35 | ex 115 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑑 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹 ∈ (ℂ–cn→ℂ))) |
| 37 | 36 | rexlimdvva 2622 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑑 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹 ∈ (ℂ–cn→ℂ))) |
| 38 | 2, 37 | mpd 13 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (ℂ–cn→ℂ)) |