![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > plyreres | GIF version |
Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
plyreres | ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plybss 14904 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ℝ ⊆ ℂ) | |
2 | plyf 14908 | . . . 4 ⊢ (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ) | |
3 | ffn 5404 | . . . 4 ⊢ (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ) | |
4 | fnssresb 5367 | . . . 4 ⊢ (𝐹 Fn ℂ → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ)) | |
5 | 2, 3, 4 | 3syl 17 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ)) |
6 | 1, 5 | mpbird 167 | . 2 ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ) Fn ℝ) |
7 | fvres 5579 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹‘𝑎)) | |
8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹‘𝑎)) |
9 | recn 8007 | . . . . . . 7 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℂ) | |
10 | ffvelcdm 5692 | . . . . . . 7 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝑎 ∈ ℂ) → (𝐹‘𝑎) ∈ ℂ) | |
11 | 2, 9, 10 | syl2an 289 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘𝑎) ∈ ℂ) |
12 | plyrecj 14933 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℂ) → (∗‘(𝐹‘𝑎)) = (𝐹‘(∗‘𝑎))) | |
13 | 9, 12 | sylan2 286 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹‘𝑎)) = (𝐹‘(∗‘𝑎))) |
14 | cjre 11029 | . . . . . . . . 9 ⊢ (𝑎 ∈ ℝ → (∗‘𝑎) = 𝑎) | |
15 | 14 | adantl 277 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘𝑎) = 𝑎) |
16 | 15 | fveq2d 5559 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘(∗‘𝑎)) = (𝐹‘𝑎)) |
17 | 13, 16 | eqtrd 2226 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹‘𝑎)) = (𝐹‘𝑎)) |
18 | 11, 17 | cjrebd 11093 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘𝑎) ∈ ℝ) |
19 | 8, 18 | eqeltrd 2270 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) |
20 | 19 | ralrimiva 2567 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) |
21 | fnfvrnss 5719 | . . 3 ⊢ (((𝐹 ↾ ℝ) Fn ℝ ∧ ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ) | |
22 | 6, 20, 21 | syl2anc 411 | . 2 ⊢ (𝐹 ∈ (Poly‘ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ) |
23 | df-f 5259 | . 2 ⊢ ((𝐹 ↾ ℝ):ℝ⟶ℝ ↔ ((𝐹 ↾ ℝ) Fn ℝ ∧ ran (𝐹 ↾ ℝ) ⊆ ℝ)) | |
24 | 6, 22, 23 | sylanbrc 417 | 1 ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ran crn 4661 ↾ cres 4662 Fn wfn 5250 ⟶wf 5251 ‘cfv 5255 ℂcc 7872 ℝcr 7873 ∗ccj 10986 Polycply 14899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-ihash 10850 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ply 14901 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |