| Step | Hyp | Ref
| Expression |
| 1 | | elply 14970 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 2 | 1 | simprbi 275 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 3 | | 0zd 9338 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → 0 ∈
ℤ) |
| 4 | | simplrl 535 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑛 ∈ ℕ0) |
| 5 | 4 | nn0zd 9446 |
. . . . . . 7
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑛 ∈ ℤ) |
| 6 | 3, 5 | fzfigd 10523 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin) |
| 7 | | plybss 14969 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| 8 | | 0cnd 8019 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈
ℂ) |
| 9 | 8 | snssd 3767 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Poly‘𝑆) → {0} ⊆
ℂ) |
| 10 | 7, 9 | unssd 3339 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 11 | 10 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 12 | 11 | adantr 276 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 13 | | simplrr 536 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 14 | | cnex 8003 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
| 15 | | ssexg 4172 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) |
| 16 | 11, 14, 15 | sylancl 413 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V) |
| 17 | | nn0ex 9255 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 18 | | elmapg 6720 |
. . . . . . . . . . 11
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
| 19 | 16, 17, 18 | sylancl 413 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
| 20 | 13, 19 | mpbid 147 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 21 | | elfznn0 10189 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 22 | | ffvelcdm 5695 |
. . . . . . . . 9
⊢ ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
| 23 | 20, 21, 22 | syl2an 289 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
| 24 | 12, 23 | sseldd 3184 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) |
| 25 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
| 26 | | expcl 10649 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
| 27 | 25, 21, 26 | syl2an 289 |
. . . . . . 7
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) |
| 28 | 24, 27 | mulcld 8047 |
. . . . . 6
⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 29 | 6, 28 | fsumcl 11565 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 30 | 29 | fmpttd 5717 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ) |
| 31 | | feq1 5390 |
. . . 4
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ)) |
| 32 | 30, 31 | syl5ibrcom 157 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
| 33 | 32 | rexlimdvva 2622 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
| 34 | 2, 33 | mpd 13 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |